Unstable Angina as a Result of Coronary-Subclavian Steal Syndrome

Michal Lelek, MD; Tomasz Bochenek, MD; Janusz Drzewiecki, MD, PhD; Maria Trusz-Gluza, MD, PhD

A 75-year-old man was transferred to our department from the local hospital because of recurrent episodes of dyspnea and angina at rest, with significant 3.0-mV ST-segment depressions in ECG leads V₃ through V₆. His medical history was significant for coronary artery disease, 2-vessel coronary artery bypass grafts (1999), nondisabling stroke (2004), type 2 diabetes mellitus, hypertension, and peripheral vascular disease. The patient also complained of dizziness and weakness of the left hand. Clinical examination was characterized by lack of radial pulse, and blood pressure could not be measured on the left arm. The echocardiogram showed apex and inferior wall hypokinesis with slightly diminished ejection fraction (50%).

Ultrasound examination revealed occlusion of the left internal carotid artery and reversed flow through the left vertebral artery, confirmed by angiography (Figure 1). Symptomatic vertebral-subclavian steal syndrome was diagnosed.

Angiography of the left coronary artery showed the entire left internal mammary artery (LIMA) graft (Figure 2) with reversed flow of contrast into the subclavian artery. The right and circumflex coronary arteries were occluded, as well as the venous graft to the right coronary artery. Contrast injection into the subclavian artery demonstrated critical 90% stenosis in the proximal part of the subclavian artery, with a translesion pressure gradient of 80 mmHg (Figure 3). Contrast selectively injected beyond the lesion merely showed the proximal parts of the left vertebral artery and LIMA, indicating the presence of reversed flow. Direct stenting of the subclavian artery was performed (Figure 4), and anterograde flow through the left vertebral artery and LIMA was reestablished. Control coronary angiography revealed only minor retrograde filling of the distal part of the LIMA, indicating that the subclavian angioplasty had produced favorable results (Figure 5). At discharge from the hospital, the patient was asymptomatic and the left radial pulse was palpable.

Although subclavian steal syndrome is rather rare, it can be manifested as acute coronary syndrome among patients with LIMA grafts or vertebrobasilar insufficiency, especially in the presence of concomitant internal carotid artery occlusion. Percutaneous angioplasty is the preferred treatment option for those patients.

Disclosures
None.

From the 1 Department of Cardiology, Medical University of Silesia, Katowice, Poland.
Correspondence to Tomasz Bochenek, MD, I Department of Cardiology, Medical University of Silesia, Ziolowa Street 45-47, 40-635 Katowice, Poland. E-mail tbochun@poczta.onet.pl

(Circ Cardiovasc Intervent. 2008;1:82-84.)
© 2008 American Heart Association, Inc.

Circ Cardiovasc Intervent is available at http://circinterventions.ahajournals.org
DOI: 10.1161/CIRCINTERVENTIONS.108.769968
Figure 1. Contrast injection into the brachiocephalic trunk and reversed flow through the left vertebral artery in late phase. The figure is a composite of 2 images obtained during different phases of the same injection: early- and late-phase contrast filling.

Figure 2. Left lateral projection of the left anterior descending artery indicating reversed flow through the LIMA.

Figure 3. Critical stenosis of the proximal part of the left subclavian artery.

Figure 4. The effect of stenting the left subclavian artery.
Figure 5. Left lateral view of the left anterior descending artery after stenting of the subclavian artery. Only minor retrograde LIMA filling is seen.
Unstable Angina as a Result of Coronary-Subclavian Steal Syndrome
Michal Lelek, Tomasz Bochenek, Janusz Drzewiecki and Maria Trusz-Gluza

Circ Cardiovasc Interv. 2008;1:82-84
doi: 10.1161/CIRCINTERVENTIONS.108.769968
Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/1/1/82

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Interventions can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Interventions is online at:
http://circinterventions.ahajournals.org//subscriptions/