Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement

Adnan K. Chhatriwalla, MD; Keith B. Allen, MD; John T. Saxon, MD; David J. Cohen, MD, MSc; Sanjeev Aggarwal, MD; Anthony J. Hart, MD; Suzanne J. Baron, MD, MSc; Danny Dvir, MD; A. Michael Borkon, MD

Background—Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR.

Methods and Results—We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P<0.001) and an increase in valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm², P<0.001). No procedural complications were reported.

Conclusions—BVF can be performed safely in small surgical valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area.

(Circ Cardiovasc Interv. 2017;10:e005216. DOI: 10.1161/CIRCINTERVENTIONS.117.005216.)

Key Words: aortic stenosis ■ bioprosthesis ■ transcatheter aortic valve replacement
WHAT IS KNOWN

- Patients with small surgical bioprostheses undergoing valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) seem to have higher residual gradients and higher late mortality than other patients undergoing VIV TAVR.
- Isolated cases have previously been reported in which a bioprosthetic valve ring has been fractured using a high-pressure balloon inflation to facilitate VIV TAVR.

WHAT THE STUDY ADDS

- Bioprosthetic valve fracture can be performed without complications in select patients undergoing VIV TAVR.
- Bioprosthetic valve fracture results in lower residual valve gradients and higher effective valve orifice areas.
- Bioprosthetic valve fracture can be successfully performed before or after VIV TAVR.

Methods

All patients in this series underwent VIV TAVR for bioprosthetic valve degeneration in accordance with the Food and Drug Administration indication for VIV TAVR and provided informed consent before the procedure. The cases were performed at 9 centers in the United States. Procedural and demographic data were deidentified and provided to the principal investigators at St Luke’s Mid America Heart Institute in Kansas City, Missouri. The Institutional Review Board at St Luke’s Mid America Heart Institute granted a waiver of informed consent and authorization for this study. Statistical analysis and article preparation was performed by the investigators at St Luke’s Mid America Heart Institute. The timing of BVF (ie, before or after implantation of the transcatheter valve) was at the discretion of the operators. In some cases, BVF was performed before VIV TAVR, to ensure that the ring could be successfully fractured before deciding which size transcatheter valve to implant. In most cases, BVF was performed after VIV TAVR, because of suboptimal hemodynamic results. BVF was performed by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Successful fracture was noted fluoroscopically when the waist of the balloon released, and by a sudden drop in inflation pressure, often accompanied by an audible snap. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF.

Statistics

Statistical analysis was performed using SPSS software (IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY). Continuous variables were expressed as means±SDs. Categorical variables were expressed as percentages or frequencies. The Shapiro–Wilk test demonstrated that the differences in measures were normally distributed. Therefore, comparisons of mean hemodynamic gradients and valve effective orifice area were performed using 2-sided paired t test. A P value of <0.05 was considered to be statistically significant for all analyses.

Results

Clinical Cases

A total of 20 patients were successfully treated with VIV TAVR and BVF. All patients survived the procedure, and there were no procedural complications, including no coronary occlusion or root rupture, no valvular or paravalvular aortic insufficiency, and no advanced atrioventricular block or pacemaker requirement reported after BVF. One patient experienced new left-sided weakness on postprocedural day 1 and was found to have a right posterior frontoparietal stroke in the area of a posterior branch of the middle cerebral artery, without acute hemorrhage or mass effect, from which he fully recovered. Patient characteristics and procedural data are summarized in the Table. The mean age of the patients was 76.4 years, and the Society of Thoracic Surgeons Predicted Risk of Mortality score was 8.4%. BVF was performed in patients undergoing VIV TAVR with both balloon-expandable (n=8) and self-expanding (n=12) transcatheter valves in Mitroflow (Sorin, Milan, Italy), Carpentier-Edwards Perimount, Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Biocor Epic and Biocor Epic Supra (St. Jude Medical, Minneapolis, MN), and Mosaic (Medtronic Inc, Minneapolis, MN) surgical valves. In most cases (15/20, 75%), operators chose to perform BVF after VIV TAVR, as opposed to beforehand. For patients in whom VIV TAVR was performed before BVF, the mean transvalvular gradient was reduced from 20.5±7.4 mm Hg after initial VIV TAVR to 6.7±3.7 mm Hg after BVF (P<0.001). Accordingly, the mean effective valve orifice area increased from 1.0±0.4 cm 2 after initial VIV TAVR to 1.8±0.6 cm 2 after BVF (P<0.001).

An example of procedural hemodynamics is depicted in Figure 1. The mean transvalvular gradient was improved from 36 mm Hg at baseline to 26 mm Hg after VIV TAVR and, finally, to 9 mm Hg after BVF. This corresponded to a valve effective orifice area of 0.8 cm 2 at baseline to 1.2 cm 2 after VIV TAVR and to 1.6 cm 2 after BVF. Figure 2 depicts fluoroscopic images from a clinical case after VIV TAVR, during BVF, and after BVF.

BVF results in a single fracture point in the surgical valve ring which can often be visualized on postprocedural imaging.12 Figure 3 demonstrates a digital reconstruction of computed tomography in a patient who underwent VIV TAVR and BVF. Figure 3, left, demonstrates a single disruption of the surgical valve ring, and the Figure 3, right, demonstrates the obverse view with an otherwise intact surgical ring. Figure 4 depicts examples of fractured valve rings as viewed ex vivo, under fluoroscopy. In Movie I in the Data Supplement, a 21-mm Magna valve treated with a 23-mm CoreValve Evolut (Medtronic Inc, Minneapolis, MN) is fractured with a 22-mm True Dilatation Balloon (Bard, Murray Hill, NJ) at a pressure of 18 atm. In Movie II in the Data Supplement, a 21-mm Mitroflow valve treated with a 20-mm Sapien 3 (Edwards Lifesciences, Irvine, CA) is fractured with a 20-mm True Dilatation Balloon at a pressure of 18 atm.

Discussion

In this article, we report positive procedural outcomes of BVF in conjunction with VIV TAVR in 20 patients, which suggest that this may be a safe technique to optimize hemodynamic results in patients with small bioprosthetic valves. The potential of BVF to reduce the impact of PPM after VIV TAVR is promising. In the largest registry of patients undergoing VIV TAVR...
Table. Clinical and Procedural Characteristics of Patients Undergoing Bioprosthetic Valve Fracture

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age, y</th>
<th>STS PROM</th>
<th>Surgical Prosthesis</th>
<th>Age of Surgical Prosthesis, y</th>
<th>True ID, mm</th>
<th>BVF TAVR, or BVF First?</th>
<th>TAVR Valve</th>
<th>TAVR Access</th>
<th>Baseline Mean Gradient, mm Hg</th>
<th>Baseline AVA, cm²</th>
<th>Post-TAVR Mean Gradient, mm Hg</th>
<th>Post-TAVR AVA, cm²</th>
<th>BVF Balloon</th>
<th>BVF Pressure (Rupture Threshold)</th>
<th>Post-BVF AVA, cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>15</td>
<td>19-mm Magna</td>
<td>9</td>
<td>17</td>
<td>TAVR</td>
<td>23-mm CV Evolut</td>
<td>TF</td>
<td>64</td>
<td>0.7</td>
<td>17</td>
<td>2.0</td>
<td>22-mm TRUE</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>4.2</td>
<td>23-mm Magna</td>
<td>10</td>
<td>21</td>
<td>TAVR</td>
<td>26-mm CV Evolut</td>
<td>TF</td>
<td>18</td>
<td>0.8</td>
<td>12</td>
<td>1.2</td>
<td>24-mm TRUE</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>76</td>
<td>3.1</td>
<td>23-mm Mosaic</td>
<td>9</td>
<td>18.5</td>
<td>TAVR</td>
<td>26-mm CV Evolut</td>
<td>TF</td>
<td>36</td>
<td>0.7</td>
<td>25</td>
<td>1.2</td>
<td>24-mm TRUE</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>14.3</td>
<td>21-mm Mitroflow</td>
<td>3</td>
<td>17</td>
<td>TAVR</td>
<td>20-mm Sapien S3</td>
<td>TC</td>
<td>54</td>
<td>0.4</td>
<td>15</td>
<td>0.9</td>
<td>20-mm TRUE</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>15</td>
<td>21-mm Mosaic</td>
<td>11</td>
<td>17</td>
<td>TAVR</td>
<td>23-mm CV Evolut</td>
<td>TF</td>
<td>60</td>
<td>0.6</td>
<td>29</td>
<td>0.75</td>
<td>20-mm TRUE</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>84</td>
<td>7.8</td>
<td>19-mm Magna</td>
<td>11</td>
<td>17</td>
<td>TAVR</td>
<td>23-mm CV Evolut</td>
<td>TF</td>
<td>40</td>
<td>0.6</td>
<td>22</td>
<td>0.75</td>
<td>20-mm TRUE</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>68</td>
<td>4.4</td>
<td>21-mm Magna</td>
<td>12</td>
<td>19</td>
<td>TAVR</td>
<td>23-mm CV Evolut</td>
<td>TF</td>
<td>44</td>
<td>0.72</td>
<td>31</td>
<td>1.02</td>
<td>22-mm TRUE</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>79</td>
<td>4</td>
<td>23-mm Carpentier-Edwards</td>
<td>16</td>
<td>20</td>
<td>TAVR</td>
<td>26-mm Sapien XT</td>
<td>TF</td>
<td>30</td>
<td>1.2</td>
<td>7</td>
<td>...</td>
<td>24-mm TRUE</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>67</td>
<td>8.2</td>
<td>25-mm Mitroflow</td>
<td>5</td>
<td>21</td>
<td>TAVR</td>
<td>26-mm Sapien XT</td>
<td>TF</td>
<td>24</td>
<td>1.0</td>
<td>11</td>
<td>...</td>
<td>26-mm TRUE</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>83</td>
<td>7</td>
<td>19-mm Mitroflow</td>
<td>8</td>
<td>15.5</td>
<td>BVF</td>
<td>20-mm Sapien S3</td>
<td>TF</td>
<td>63</td>
<td>0.6</td>
<td>...</td>
<td>1.02</td>
<td>20-mm Atlas Gold</td>
<td>16</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>83</td>
<td>8</td>
<td>21-mm Mitroflow</td>
<td>7</td>
<td>17</td>
<td>BVF</td>
<td>23-mm Sapien S3</td>
<td>TF</td>
<td>26</td>
<td>...</td>
<td>...</td>
<td>22-mm Atlas Gold</td>
<td>18</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>12</td>
<td>81</td>
<td>8</td>
<td>19-mm Mitroflow</td>
<td>7</td>
<td>15.5</td>
<td>BVF</td>
<td>20-mm Sapien S3</td>
<td>TF</td>
<td>64</td>
<td>0.6</td>
<td>...</td>
<td>20-mm Atlas Gold</td>
<td>15</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>13</td>
<td>62</td>
<td>...</td>
<td>21-mm Epic</td>
<td>...</td>
<td>16.5</td>
<td>TAVR</td>
<td>23-mm Sapien S3</td>
<td>TF</td>
<td>31</td>
<td>0.65</td>
<td>22</td>
<td>0.78</td>
<td>22-mm TRUE</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>62</td>
<td>...</td>
<td>19-mm Epic Supra</td>
<td>...</td>
<td>16.5</td>
<td>TAVR</td>
<td>20-mm Sapien S3</td>
<td>TF</td>
<td>39</td>
<td>0.5</td>
<td>23</td>
<td>0.84</td>
<td>20-mm TRUE</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td>9.7</td>
<td>21-mm Magna</td>
<td>10</td>
<td>19</td>
<td>TAVR</td>
<td>23-mm CV Evolut</td>
<td>TF</td>
<td>40</td>
<td>0.5</td>
<td>25</td>
<td>0.9</td>
<td>22-mm TRUE</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>77</td>
<td>...</td>
<td>19-mm Perimount</td>
<td>14</td>
<td>17</td>
<td>TAVR</td>
<td>23-mm CV Evolut</td>
<td>TF</td>
<td>40</td>
<td>0.75</td>
<td>25</td>
<td>...</td>
<td>20-mm TRUE</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>75</td>
<td>7.3</td>
<td>21-mm Mosaic</td>
<td>9</td>
<td>16.5</td>
<td>BVF</td>
<td>23-mm CV Evolut</td>
<td>TF</td>
<td>40</td>
<td>...</td>
<td>...</td>
<td>22-mm TRUE</td>
<td>14</td>
<td>...</td>
<td>1.4</td>
</tr>
<tr>
<td>18</td>
<td>70</td>
<td>2.3</td>
<td>25-mm Mosaic</td>
<td>7</td>
<td>20.5</td>
<td>BVF</td>
<td>26-mm CV Evolut</td>
<td>TF</td>
<td>40</td>
<td>1.3</td>
<td>...</td>
<td>24-mm TRUE</td>
<td>14</td>
<td>...</td>
<td>1.7</td>
</tr>
<tr>
<td>19</td>
<td>85</td>
<td>4.1</td>
<td>23-mm Perimount</td>
<td>15</td>
<td>19</td>
<td>TAVR</td>
<td>23-mm CV Evolut</td>
<td>TF</td>
<td>46</td>
<td>0.5</td>
<td>24</td>
<td>0.85</td>
<td>24-mm VIDA</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>87</td>
<td>17</td>
<td>21-mm Mosaic</td>
<td>10</td>
<td>17</td>
<td>TAVR</td>
<td>23-mm CV Evolut</td>
<td>TF</td>
<td>39</td>
<td>0.8</td>
<td>10</td>
<td>2.0</td>
<td>22-mm TRUE</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td>76.4</td>
<td>8.4</td>
<td>9.5</td>
<td>17.8</td>
<td>41.9±11.2</td>
<td>0.6±0.2</td>
<td>20.5±7.4</td>
<td>1.0±0.4</td>
<td>6.7±3.7</td>
<td>1.8±0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVA indicates aortic valve area; BVF, bioprosthetic valve fracture; CV, CoreValve; ID, inner diameter; PROM, Predicted Risk of Mortality; STS, Society of Thoracic Surgeons; TAVR, transcatheter aortic valve replacement; TC, transcatheter; TF, transfemoral; and VIV, valve in valve.

*P value refers to t test comparing groups at baseline and post-TAVR.
†P value refers to t test comparing groups post-TAVR and post-BVF.
to date, Dvir et al reported a 38% incidence of severe PPM after VIV TAVR and a higher incidence of PPM in patients with smaller-sized surgical valves. Importantly, 1-year mortality among patients with labeled valve sizes which were small (≤21 mm) and intermediate (>21 and <25 mm) was higher than in patients with larger (≥25 mm) surgical valves undergoing VIV TAVR. These data suggest that suboptimal postprocedural hemodynamics play an important role in long-term outcomes after VIV TAVR. BVF directly addresses this issue and has a dramatic effect on postprocedural gradients and effective valve orifice area in our series. Whether this technique improves long-term clinical outcomes remains to be seen.

Figure 1. Example of procedural hemodynamics with valve-in-valve transcatheter aortic valve replacement (TAVR) and bioprosthetic valve fracture (BVF). A, Baseline hemodynamics demonstrating severe bioprosthetic aortic stenosis. Mean aortic valve gradient is 36 mm Hg; effective orifice area is 0.8 cm². B, Hemodynamics post-TAVR deployment demonstrating improved transvalvular gradient. Mean aortic valve gradient is 26 mm Hg; effective orifice area is 1.2 cm². C, Hemodynamics post-BVF demonstrating final transvalvular gradient. Mean aortic valve gradient is 9 mm Hg; effective orifice area is 1.6 cm².

Figure 2. Fluoroscopic images of the stages of valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) followed by bioprosthetic valve fracture (BVF). A, Immediately after VIV TAVR. B, During BVF before fracture of surgical ring. Note the waist of the balloon at the level of the surgical valve ring. C, During BVF after fracture of surgical ring. Note the release of the balloon waist. D, Final fluoroscopic results.
An important question remains as to the timing of BVF, that is, before or after transcatheter valve implantation. There are potential advantages to both strategies. Fracture of the bioprosthetic ring before TA VR implant may allow for a larger-sized TA VR prosthesis to be used, whereas fracture of the bioprosthetic ring after TA VR implant may allow for further expansion of the TA VR valve itself. Fracture of the bioprosthetic ring before TA VR implant may allow for a larger-sized TA VR prosthesis to be used, whereas fracture of the bioprosthetic ring after TA VR implant may allow for further expansion of the TA VR valve itself. In the former scenario, there remains concern regarding balloon dilatation of degenerated bioprosthetic valves, for fear of leaflet tearing and resultant aortic insufficiency, as well as the potential for dislodgement and embolization of debris. On the other hand, if BVF follows transcatheter valve implantation, the TA VR prosthesis itself is subjected to a high-pressure balloon inflation, which in some cases may cause acute structural damage or accelerated degeneration. In either scenario, BVF may reduce PPM and optimize hemodynamics by decreasing the residual aortic valve gradient during VIV TA VR. Whether the timing of BVF is a determinant of clinical outcomes remains to be seen.

The majority of cases in our clinical series were performed with balloons sized 1 mm larger than the labeled valve size, which has been demonstrated to be effective in bench testing. However, BVF may only require the use of balloons which are larger than the internal diameter of the prosthesis. The use of smaller diameter balloons for BVF may minimize trauma to the aortic annulus and minimize the risk of complications. On the other hand, the use of smaller balloons may result in less optimal expansion of the TA VR prosthesis, which may impact valve hemodynamics. The long-term consequences of suboptimal expansion of TA VR prostheses, as is the case in VIV TA VR, are not fully understood. Even if BVF is performed to optimize valve hemodynamics, it remains unclear whether satisfactory long-term outcomes after VIV TA VR can be best attained in a given patient by using a smaller TA VR valve which is fully expanded, or a larger TA VR valve which may not achieve full expansion (eg, a perfectly expanded 20 mm versus a suboptimally expanded 23 mm valve). Similarly, it remains unclear whether self-expanding or balloon-expandable transcatheter valves are better suited for this application. On the basis of bench testing, the radial force of a self-expanding valve seems adequate to achieve optimal expansion of the transcatheter valve inside a fractured surgical valve. On the other hand, Sapien XT and Sapien 3 valves deployed in a fractured surgical valve were underexpanded, and postdilatation with a noncompliant balloon was required to optimize the transcatheter valve expansion. Bench testing also suggests that the outer Dacron sewing ring of bioprosthetic valves results in a limit to how much further a valve can be expanded after BVF. Therefore, further investigation is needed to determine optimal balloon sizing for BVF and optimal transcatheter valve selection when using this technique.

A final question that is raised by our results is the role of BVF in patients with larger surgical prostheses. Although these patients have a higher 1-year survival than patients with small surgical valves, as well as a lower incidence of PPM, after VIV TA VR, it is not known whether BVF of large prostheses will result in even further improvement in postprocedural hemodynamics and survival in these patients. There is some evidence to suggest that underexpansion of bioprosthetic valves may lead to early prosthetic deterioration because of folds in the bioprosthetic leaflets. Therefore, an up-front strategy of BVF in all degenerated surgical valves could, in theory, improve outcomes for all patients undergoing VIV TA VR. Further clinical experience is required to provide insight on this novel technique.

Despite these initial promising results, there are several limitations to this study. Although no procedural complications were...
observed with BVF in this small series, reasonable concerns remain regarding the potential for BVF to cause aortic root rupture or coronary artery occlusion, and a heavily calcified aortic root or anatomy predisposing to coronary occlusion might preclude the use of this technique. Because computed tomographic imaging was not routinely performed after BVF, subclinical injury to the aorta cannot be fully assessed. One patient in this series experienced a postprocedural stroke, but whether this complication was specifically related to BVF is unknown, and larger studies are needed to fully evaluate the safety of this technique. Previous work has demonstrated that although the majority of commercially available bioprosthetic valves can be fractured with high-pressure balloon inflation, some, such as the St Jude Trifecta and the Medtronic Hancock II, cannot be fractured. Furthermore, the location of the previously implanted surgical valve (i.e., supra-annular or intra-annular) may be important because BVF in a surgical valve that was implanted in the supra-annular position may offer a superior risk–benefit profile when compared with BVF of a surgical valve that was positioned in the native annulus. Further study of patient factors such as aortic root and coronary sinus dimension will be important to determine patient-specific limitations of BVF and avoid complications, and if concerns regarding such issues are present in a given patient, back-up cardiological support could be considered at the time of BVF.

Conclusions

BVF can be performed safely in small surgical valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area.

Acknowledgments

We thank Anthony A. Bavry, MD (University of Florida, Gainesville, FL); Thomas M. Beaver, MD (University of Florida, Gainesville, FL); Ashkan Karimi, MD (University of Florida, Gainesville, FL); Dennis J. Gory, MD (Peace Health Medical Group, Eugene, OR); Joshua D. Rovin, MD (Morton Plant Hospital, Tampa, FL); Pranav Loyalka, MD (Memorial Hermann—Texas Medical Center, Houston; and University of Texas Medical School at Houston); Tom C. Nguyen, MD (Memorial Hermann—Texas Medical Center, Houston; and University of Texas Medical School at Houston); Juhana Karha, MD (Austin Heart, Austin, TX); Brian W. Hummel, MD (Lee Memorial Hospital, Fort Myers, FL); Mark J. Russo, MD (Newark Beth Israel Medical Center, Newark, NJ; Rutgers New Jersey Medical School, Newark, NJ); Bruce J. Haik, MD (Newark Beth Israel Medical Center, Newark, NJ; and New Jersey Cardiology Associates, West Orange, NJ); Richard Lee, MD, MBA (St Louis University School of Medicine, St. Louis, MO); and Michael J. Lim, MD (St Louis University School of Medicine, St. Louis, MO).

Disclosures

Dr Chhatriwalla receives research and clinical trial support from Medtronic, St Jude Medical, Edwards Lifesciences, and Abbott Vascular. Dr Chhatriwalla is on the speakers’ bureau for Abbott Vascular. Dr Allen receives research and clinical trial support from Medtronic, St Jude Medical, and Edwards Lifesciences. Dr Baron is on the speakers bureau of Edwards Lifesciences. The authors report no conflicts.

References

Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement

Adnan K. Chhatriwalla, Keith B. Allen, John T. Saxon, David J. Cohen, Sanjeev Aggarwal, Anthony J. Hart, Suzanne J. Baron, Danny Dvir and A. Michael Borkon

Circ Cardiovasc Interv. 2017;10:
doi: 10.1161/CIRCINTERVENTIONS.117.005216

Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2017 American Heart Association, Inc. All rights reserved.

Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circinterventions.ahajournals.org/content/10/7/e005216

Data Supplement (unedited) at:

http://circinterventions.ahajournals.org/content/suppl/2017/07/11/CIRCINTERVENTIONS.117.005216.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Interventions_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:

http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Interventions_ is online at:

http://circinterventions.ahajournals.org//subscriptions/