A 54-year-old asymptomatic woman (M.H.S.), was referred to the Hospital das Clínicas da Universidade Federal de Minas Gerais (HC/UFMG) cardiology service for routine cardiological evaluation in 2006. The physical examination and basal ECG were normal. Exercise stress testing showed unspecific ST segment alteration, and technetium scintigraphy was normal. One year later, repeat examination showed normal basal ECG, discrete displacement of ST segment by exercise stress testing, and transient ischemic alteration in apical area by technetium perfusion imaging. Injection in the right coronary showed dilation with collateral vessels to the left coronary artery and a hypoplastic left descendent artery (Figure 1, Video 1). The anomalous origin of the left coronary artery from the left ventricle could be seen by the flow from left coronary artery to left ventricle in diastole by angiography (Figure 2, Video 2) and by multislice computed tomography (Figure 3A). Coronariography and computed tomography showed absence of left coronary aorta ostia (Figure 3B). There was no evidence of coronary disease. Coronary artery ectopic origin from ventricular cavity is a very rare condition that may cause coronary insufficiency and sudden death.1,2 To our knowledge, this is the first reported case in which the left coronary artery origins from the left ventricle.

The authors had full access to and take full responsibility for the integrity of the data. All authors have read and agree to the manuscript as written.

Sources of Funding
Dr Ribeiro was supported by research grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (No.
Disclosures

None.

References

Anomalous Origin of Left Coronary Artery From the Left Ventricle
Edmundo C. Oliveira, Antonio Carlos Neves Pereira, Antonio Luiz P. Ribeiro, José Guilherme Carneiro, Maria Helena Albernaz Siqueira, Helder Paupério and Carlos Faria Santos Amaral

doi: 10.1161/CIRCINTERVENTIONS.108.819227
Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/2/2/147

Data Supplement (unedited) at:
http://circinterventions.ahajournals.org/content/suppl/2009/04/04/2.2.147.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Interventions can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Interventions is online at:
http://circinterventions.ahajournals.org//subscriptions/
SUPPLEMENTARY MATERIAL

Video 1. Collaterals form Right Coronary Artery (RCA) to Left Coronary Artery (LCA), connected to left ventricle (LV). Observe a hypoplastic left artery descendent (LAD). Right coronary injection at left anterior oblique view.

Video 2. Right Coronary Artery (RC) dilated with collateral to Left Coronary Artery (LCA) connected with left ventricle (LV). Right Coronary injection at left anterior oblique view.