Paclitaxel-Eluting Stents Show Superiority to Balloon Angioplasty and Bare Metal Stents in Femoropopliteal Disease

Twelve-Month Zilver PTX Randomized Study Results

Michael D. Dake, MD; Gary M. Ansel, MD; Michael R. Jaff, DO; Takao Ohki, MD; Richard R. Saxon, MD; H. Bob Smouse, MD; Thomas Zeller, MD; Gary S. Roubin, MD; Mark W. Burket, MD; Yazan Khatib, MD; Scott A. Snyder, PhD; Anthony O. Ragheb, PhD; J. King White, MD; Lindsay S. Machan, MD; on behalf of the Zilver PTX Investigators

Background—Sustained benefits of drug-eluting stents in femoropopliteal arteries have not been demonstrated. This prospective, multinational, randomized study was designed to compare the 12-month safety and effectiveness of a polymer-free, paclitaxel-coated nitinol drug-eluting stent (DES) with percutaneous transluminal angioplasty (PTA) and provisional bare metal stent (BMS) placement in patients with femoropopliteal peripheral artery disease.

Methods and Results—Patients were randomly assigned to primary DES implantation (n=236) or PTA (n=238). Demographics and lesion characteristics were similar between groups (eg, average lesion length, approximately 65±40 mm). One hundred twenty patients had acute PTA failure and underwent secondary random assignment to provisional DES (n=61) or BMS (n=59). Primary end points were the 12-month rates of event-free survival and patency in the primary DES and PTA groups. Compared with the PTA group, the primary DES group exhibited superior 12-month event-free survival (90.4% versus 82.6%; P=0.004) and primary patency (83.1% versus 32.8%; P<0.001), satisfying the primary hypotheses. In the secondary evaluations, (1) the primary DES group exhibited superior clinical benefit compared with the PTA group (88.3% versus 75.8%; P<0.001), (2) the provisional DES group exhibited superior primary patency (89.9% versus 73.0%; P=0.01) and superior clinical benefit (90.5% and 72.3%, P=0.009) compared with the provisional BMS group, and (3) the stent fracture rate (both DES and BMS) was 0.9% (4/457).

Conclusions—Femoropopliteal peripheral artery disease treatment with the paclitaxel-eluting stent was associated with superior 12-month outcomes compared with PTA and provisional BMS placement.

Key Words: peripheral vascular disease ■ angioplasty ■ paclitaxel-eluting stent ■ drug-eluting stent

Endovascular therapy is one option commonly used to treat patients with lifestyle-limiting intermittent claudication or critical limb ischemia caused by femoropopliteal peripheral artery disease (PAD). However, data supporting specific therapies are limited. Percutaneous transluminal balloon angioplasty (PTA) is associated with unacceptable 1-year restenosis rates (often ≥60%)1–3 that worsen with lesion complexity. Some first-generation stents were associated with outcomes similar to PTA.4,5 More recently, self-expanding nitinol stents have demonstrated improved patency results, yet restenosis remains a limitation, with 12-month rates between 20% and 37% reported.3,6–8

Success in coronary artery intervention9–12 led to investigation of drug-eluting stents (DES) in the superficial femoral artery (SFA). Six-month results with polymer-based sirolimus-eluting13 and everolimus-eluting14 stents were favorable, but benefits were not sustained.
Paclitaxel has been shown to inhibit neointimal hyperplasia, is highly lipophilic, is avidly protein-bound, and partitions into and is retained by arterial tissue.15–17 In recent clinical trials, paclitaxel-coated balloons in the SFA have been associated with improved outcomes compared with PTA,18,19 further suggesting that prolonged paclitaxel delivery may be unnecessary for inhibiting restenosis.

The purpose of the Zilver PTX Randomized Clinical Study was to evaluate the safety and effectiveness of a self-expanding nitinol DES with 3 \(\text{μg/mm}^2 \) polymer-free paclitaxel coating on its outer surfaces.

WHAT IS KNOWN

- Restenosis and loss of patency remain limitations of percutaneous transluminal balloon angioplasty (PTA) and bare metal stents (BMS) in the endovascular management of patients with symptomatic femoropopliteal peripheral artery disease.
- Data are limited regarding successful use of drug-eluting stents (DES) in the treatment of femoropopliteal artery disease.

WHAT THE STUDY ADDS

- The Zilver PTX is a randomized study of a paclitaxel-coated, self-expanding nitinol stent (DES) versus PTA and provisional stenting (BMS versus DES) for lesions up to 14 cm long in the above-the-knee femoropopliteal artery.
- DES in moderate-length femoropopliteal lesions resulted in superior outcomes at 12 months compared with PTA and BMS, supporting use in this lesion subset.
- The results with DES in a broader population of patients with femoropopliteal disease, including lesions longer than 14 cm, could complement the present study.

Methods

Study Design

The Zilver PTX Randomized Clinical Study was a prospective, multinational, controlled trial designed to randomly assign 480 patients with symptomatic PAD involving the above-the-knee femoropopliteal arteries to receive PTA or primary DES (paclitaxel-coated Zilver PTX Drug-Eluting Stent, Cook Medical, Bloomington, IN) treatment. Because PTA often fails acutely, the study included a secondary random assignment to treatment with either the DES or provisional BMS, supporting use in this lesion subset. The results with DES in a broader population of patients with femoropopliteal disease, including lesions longer than 14 cm, could complement the present study.

Interventions

Preprocedure data collection included Rutherford classification, ABI, and Walking Impairment Questionnaire20 (WIQ; a validated measure of patient-perceived walking performance). After baseline arteriography, eligible patients were randomly assigned to either PTA or DES treatment.

Stents were implanted to fully cover the target lesion(s) and were placed at least 1 cm below the SFA origin and above the medial femoral epicondyle. Predilation and postdilation were at the physician’s discretion, with residual DS \(<30\%\) required for procedural success.

PTA was performed according to institutional standard practice. Acute PTA failure was defined as \(\geq 30\%\) DS noted on arteriography (including persistent, flow-limiting dissections) or a \(\geq 50\text{ mm Hg} \) mean trans-stenotic pressure gradient. The protocol required 1 repeat, 2- to 3-minute balloon inflation before PTA was considered a failure. Patients who had acute PTA failure underwent secondary random assignment to receive either provisional BMS or DES. PTA treatments that did not acutely fail were considered optimal PTA, and these patients did not receive stents.

Within 3 days after the procedure, all patients underwent ABI assessment and duplex ultrasonography, and high-resolution stent radiographs in 2 planes (1 with the leg straight and 1 with the leg bent 90° at the knee) were obtained for stented patients.

Medical Therapy

The same antiplatelet regimen was recommended for all patients: clopidogrel starting at least 24 hours before the intervention or a procedural loading dose of 300 mg orally; continued clopidogrel starting at least 24 hours before the intervention or a procedural loading dose of 300 mg orally; continued clopidogrel therapy for at least 60 days after the procedure; and lifelong aspirin therapy. In Japan, clopidogrel was not available; therefore, ticlopidine was an acceptable substitute.

Follow-Up

Follow-up included telephone contact at 1, 3, and 9 months to assess overall patient condition. The 6- and 12-month in-clinic data collection included ABI, Rutherford score, WIQ, and duplex ultrasonography evaluation of patency. High-resolution stent radiographs in 2 planes (1 with the leg straight and 1 with the leg bent 90° at the knee) were obtained at 12 months to assess stent integrity.

Primary End Points

As required by regulatory authorities, the primary safety and effectiveness hypotheses compared the primary DES and PTA groups. Both analyses were performed per the initial random assignment (ie, intention-to-treat analyses). The primary safety end point was event-free survival (EFS) at 12 months defined as freedom from both (1) CEC-adjudicated major adverse events (death, amputation, clinically driven target lesion revascularization [TLR], target limb ischemia requiring surgical intervention, or surgical repair of the target vessel) and (2) worsening of the Rutherford score by 2 classes, or to class 5 or 6. Clinically driven TLR was defined as reintervention performed...
for ≥50% diameter stenosis identified by duplex ultrasound and arteriography within ±5 mm of the target lesion after documentation of recurrent clinical symptoms of PAD.

The primary effectiveness end point was primary patency (including the region 5 mm proximal and distal to the target lesion) at 12 months. Patency was conservatively defined as duplex ultrasound–derived peak systolic velocity ratio <2.0 from core laboratory analysis or <50% DS from arteriographic core laboratory analysis, when available. As prespecified, acute PTA failure was counted as a loss of patency for the primary effectiveness end point.

Secondary Evaluations
Protocol-specified secondary evaluations included comparison of the patency rates for provisional DES versus provisional BMS placement after acute PTA failure, comparison of clinical outcomes (ABI, Rutherford score, WIQ) at 12 months for the primary DES versus PTA groups, and stent integrity based on core laboratory analysis of radiographs. Additional evaluations included comparison of patency rates for primary DES versus optimal PTA and primary DES versus PTA with provisional stent placement and assessment of a posttreatment clinical benefit index (defined as freedom from persistent or worsening claudication, rest pain, ulcer, or tissue loss after the initial study treatment).

Statistical Analysis
Sample size was estimated on the basis of available literature describing femoropopliteal PTA outcomes. The calculation assumed the 12-month primary patency rates were 65% and 80% in the PTA and DES groups, respectively. Power analysis was performed using a logistic regression model assumed to contain the treatment effect and 3 binary covariates. An overall model Q statistic with 4 degrees of freedom resulted in a sample size of 413 patients, to provide 80% power. Primary patency was assessed using a generalized estimating equations (GEE) model on a per-lesion basis to account for multiple treated lesions per patient. Independence of multiple lesions was assumed for all lesion analyses, except the primary patency outcome.

The noninferiority primary safety hypothesis was assessed on a per-patient basis using a Z-statistic constructed from the Kaplan-Meier estimates: $Z = (\text{EFS}_{\text{DES}} - \text{EFS}_{\text{PTA}} + \delta) / \text{SE}$, where EFS_{PTA} and EFS_{DES} are Kaplan-Meier estimates for 12-month EFS rates; δ is the minimum difference of practical interest; and SE is the standard error of $\text{EFS}_{\text{DES}} - \text{EFS}_{\text{PTA}}$. The power is 0.92, assuming worst-case event-free survival rates (0.50 and 0.55 in the PTA and DES groups, respectively; $\alpha = 0.05$, $\delta = 0.10$, and 207 patients per treatment arm).

Analyses were performed using SAS 9.1 (SAS Institute, Cary, NC). The primary methods were Fisher exact test (categorical patient characteristics), unpaired t-test (continuous patient characteristics), paired t test (ABI and WIQ), Kaplan-Meier with the log-rank test (time to primary patency) or Z-test (safety), and GEE model (logit for patency and multinomial for Rutherford). The family of probability values for tests of EFS and patency were adjusted for multiplicity. Other probability values are unadjusted.

Results
Between March 2005 and August 2008, 479 patients (238 in the PTA group, and 241 in the DES group) were enrolled at 55 institutions in the United States, Japan, and Germany (Figure 1). Demographics, comorbidities, and lesion characteristics were similar for the groups (Table 1). These included approximately 91% of patients with claudication (Rutherford classification 2–3) and 9% with critical limb ischemia (Rutherford classification 4–6), an average lesion length of approximately 65±40 mm, and approximately 27% total occlusions.

Procedures
Three hundred fifty-nine primary DES were placed (mean, 1.5; median, 1; range, 1–4 stents per patient), with a procedural success rate of 95%. One hundred twenty patients
Lesion characteristics

After secondary random assignment, 59 and 61 patients with acute PTA failure underwent provisional stent placement, with 93 BMS and 94 DES placed to treat 62 and 63 lesions, respectively. Overall, the most commonly used stent diameters were 6 and 7 mm (91.7%) and the most common length was 80 mm (55.9%).

Safety

The primary DES group exhibited EFS superior to the PTA group (including approximately 50% optimal PTA, 25% provisional BMS, and 25% provisional DES). The 12-month EFS rates were 90.4% for DES and 82.6% for PTA (P=0.004; Figure 2), satisfying the primary safety hypothesis.

There were no procedure- or device-related deaths, and amputation and worsening of Rutherford classification were rare, with similar frequencies in the study groups (Table 2). The most common major adverse event was clinically driven TLR. The core laboratory determined arteriographic diameter stenosis immediately before TLR was 80±16% (mean±SD), and TLR occurred significantly less often (P=0.01) in the DES group (9.5%; 21/220) than in the PTA group (17.5%; 39/223).

All-cause death (eg, malignancy, pulmonary disease, congestive heart failure) included 4 patients in the PTA group and 9 patients in the DES group (P=0.17). Other reported adverse events were consistent with this patient population and reported at similar rates in both study groups. There were no reports of hypersensitivity reactions or adverse drug effects related to the paclitaxel coating or nitinol stent.

Effectiveness

The 12-month primary patency rate of 83.1% for the primary DES group was significantly superior (P<0.001; GEE and log-rank test, Figure 3) to the 32.8% for the PTA group (as prespecified, acute PTA failure was counted as a loss of patency), satisfying the primary effectiveness hypothesis.

The secondary comparisons included in Figure 3 also showed superior 12-month primary patency with primary DES placement. Specifically, the 83.1% patency rate for primary DES placement was significantly superior (P<0.001) to the 65.3% rate for optimal PTA, a group that excludes patients who had acute PTA failure. In addition, the 83.1% patency rate for primary DES placement was significantly superior (P=0.01) to the 73.4% rate for PTA with provisional stent placement (a group that does not count acute PTA failure as a loss of patency and therefore comprised patients with optimal PTA (50%), and patients with provisional BMS (25%) and provisional DES placement (25%) after acute PTA failure).

The protocol-specified secondary evaluation of the provisional stent groups provided a direct assessment of the paclitaxel effect and showed a superior 12-month primary patency rate of 89.9% for DES compared with 73.0% for BMS (P=0.01; Figure 4) in the setting of provisional stenting.

Clinical Outcomes

The ABI values, Rutherford scores, and walking impairment scores each significantly improved (P<0.001) from before treatment to 12 months in both the PTA and primary DES groups, with no significant differences between the groups (Table 3). Additionally, the posttreatment clinical

Table 1. Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>PTA Group</th>
<th>DES Group</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age, y</td>
<td>67.7±10.6</td>
<td>67.9±9.6</td>
<td>0.88</td>
</tr>
<tr>
<td>Male sex, n</td>
<td>152 (63.9%)</td>
<td>155 (65.7%)</td>
<td>0.70</td>
</tr>
<tr>
<td>Body mass index</td>
<td>28.2±5.6</td>
<td>28.4±5.3</td>
<td>0.71</td>
</tr>
<tr>
<td>Claudication (Rutherford class 2–3)</td>
<td>90.7%</td>
<td>90.2%</td>
<td>>0.99</td>
</tr>
<tr>
<td>Critical limb ischemia (Rutherford class 4–6)</td>
<td>8.5%</td>
<td>8.9%</td>
<td></td>
</tr>
<tr>
<td>Diabetes, n</td>
<td>100 (42.0%)</td>
<td>116 (49.2%)</td>
<td>0.13</td>
</tr>
<tr>
<td>Type I, n</td>
<td>13 (13.0%)</td>
<td>19 (16.4%)</td>
<td>0.56</td>
</tr>
<tr>
<td>Type II, n</td>
<td>87 (67.0%)</td>
<td>97 (83.6%)</td>
<td></td>
</tr>
<tr>
<td>Hypertension, n</td>
<td>194 (81.5%)</td>
<td>210 (89.0%)</td>
<td>0.02*</td>
</tr>
<tr>
<td>Hypercholesterolemia, n</td>
<td>166 (69.7%)</td>
<td>180 (76.3%)</td>
<td>0.12</td>
</tr>
<tr>
<td>History of smoking, n</td>
<td>200 (84.0%)</td>
<td>204 (86.4%)</td>
<td>0.70</td>
</tr>
<tr>
<td>Renal disease, n</td>
<td>25 (10.5%)</td>
<td>24 (10.2%)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Pulmonary disease, n</td>
<td>38 (16.0%)</td>
<td>45 (19.1%)</td>
<td>0.39</td>
</tr>
<tr>
<td>History of myocardial infarction, n</td>
<td>41 (17.2%)</td>
<td>50 (21.2%)</td>
<td>0.29</td>
</tr>
<tr>
<td>Lesion characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesions, n</td>
<td>251</td>
<td>247</td>
<td>0.63</td>
</tr>
<tr>
<td>Lesion location, n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFA</td>
<td>232 (92.4%)</td>
<td>229 (92.7%)</td>
<td></td>
</tr>
<tr>
<td>SFA/popliteal</td>
<td>6 (2.4%)</td>
<td>9 (3.6%)</td>
<td></td>
</tr>
<tr>
<td>Popliteal</td>
<td>13 (5.2%)</td>
<td>9 (3.6%)</td>
<td></td>
</tr>
<tr>
<td>Previous intervention to study lesion, n</td>
<td>14 (5.9%)</td>
<td>13 (5.5%)</td>
<td>0.69</td>
</tr>
<tr>
<td>Vascular access, n</td>
<td></td>
<td></td>
<td>0.78</td>
</tr>
<tr>
<td>Contralateral</td>
<td>189 (86.7%)</td>
<td>211 (85.4%)</td>
<td></td>
</tr>
<tr>
<td>Ipsilateral</td>
<td>29 (13.3%)</td>
<td>36 (14.6%)</td>
<td></td>
</tr>
<tr>
<td>Occlusion, n</td>
<td>62 (24.7%)</td>
<td>73 (29.6%)</td>
<td>0.20</td>
</tr>
<tr>
<td>Lesion length, normal-to-normal, mm</td>
<td>63.1±40.7</td>
<td>66.4±38.9</td>
<td>0.35</td>
</tr>
<tr>
<td>Lesion length, ‡>20% DS, mm</td>
<td>53.2±40.3</td>
<td>54.3±40.8</td>
<td>0.76</td>
</tr>
<tr>
<td>MLD in lesion, mm‡</td>
<td>1.1±0.9</td>
<td>1.0±0.9</td>
<td>0.44</td>
</tr>
<tr>
<td>Percent diameter stenosis, †%</td>
<td>78.4±17.1</td>
<td>79.6±17.0</td>
<td>0.44</td>
</tr>
<tr>
<td>Lesion calcification, † n<0.001‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>12 (4.8%)</td>
<td>4 (1.7%)</td>
<td></td>
</tr>
<tr>
<td>Little</td>
<td>95 (38.2%)</td>
<td>62 (25.9%)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>55 (22.1%)</td>
<td>85 (35.6%)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>87 (34.9%)</td>
<td>88 (36.8%)</td>
<td></td>
</tr>
<tr>
<td>Ulcerations, † n</td>
<td>47 (19.0%)</td>
<td>40 (16.8%)</td>
<td>0.55</td>
</tr>
</tbody>
</table>

PTA indicates percutaneous transluminal angioplasty; DES, drug-eluting stent; SFA, superficial femoral artery; DS, diameter stenosis; and MLD, minimum lumen diameter.
P values are based on t test for continuous variables and Fisher exact test for categorical variables.
*Statistically significant. †Core lab data. ‡Indicates that overall, the DES group had significantly more calcification than did the PTA group.

(120/238, 50.4%) in the PTA group had acute PTA failure. After secondary random assignment, 59 and 61 patients with acute PTA failure underwent provisional stent placement,
benefit index was sustained through 12 months in 88.3% of patients in the primary DES group, compared with 75.8% of patients in the PTA group (including those who underwent provisional DES and BMS placement after acute PTA failure; \(P < 0.001 \), Figure 5). The clinical benefit index was also sustained through 12 months in 90.5% of patients in the provisional DES group, compared with 72.3% in the provisional BMS group \((P = 0.009 \), Figure 6).

Stent Integrity

There were no periprocedural stent fractures (ie, 529/529 stents were free from fracture after implantation). At 12 months, 453 of 457 (99.1%) DES and BMS were free from fracture, yielding a 12-month fracture rate of 0.9% (4/457). Two fractures each were type I and type III. No fracture was associated with adverse events.

<table>
<thead>
<tr>
<th>Months Post-procedure</th>
<th>EFS = Standard Error</th>
<th>Cumulative Failed</th>
<th>Cumulative Censored</th>
<th>Remaining at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
<td>PTA</td>
<td>Primary DES</td>
<td>PTA</td>
<td>Primary DES</td>
</tr>
<tr>
<td>0</td>
<td>100.0 ± 0.0%</td>
<td>100.0 ± 0.0%</td>
<td>0</td>
<td>236</td>
</tr>
<tr>
<td>1</td>
<td>100.0 ± 0.0%</td>
<td>99.1 ± 0.0%</td>
<td>0</td>
<td>236</td>
</tr>
<tr>
<td>12</td>
<td>93.2 ± 1.7%</td>
<td>97.0 ± 1.1%</td>
<td>16</td>
<td>215</td>
</tr>
</tbody>
</table>

Table 2. Major Adverse Events

<table>
<thead>
<tr>
<th>12-Month Major Adverse Events†</th>
<th>PTA Group</th>
<th>DES Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amputation (toe)</td>
<td>0 (0.0%)</td>
<td>1 (0.5%)</td>
</tr>
<tr>
<td>Clinically driven TLR‡</td>
<td>39 (17.5%)</td>
<td>21 (9.5%)</td>
</tr>
<tr>
<td>Worsening of Rutherford classif</td>
<td>2 (0.9%)</td>
<td>0 (0.0%)</td>
</tr>
</tbody>
</table>

†Independently adjudicated by the Clinical Events Committee to be device-related and/or procedure-related.

‡Clinically driven TLR was defined as reintervention performed for ≥50% diameter stenosis arteriographically identified within ±5 mm of the target lesion, after documentation of recurrent clinical symptoms of peripheral artery disease.

Discussion

Successful endovascular treatment of patients with symptomatic PAD involving the femoropopliteal arteries is challenging, and consensus is lacking regarding the relative effectiveness of various endovascular therapies. The results of the present study met the primary study hypotheses by demonstrating significantly superior 12-month safety (EFS) and effectiveness (primary patency) with the polymer-free paclitaxel-coated DES compared with PTA in symptomatic patients with moderate length (≤14 cm) SFA and proximal popliteal artery lesions. Specifically, the 12-month primary end point results comparing the PTA and primary DES groups showed EFS rates of 82.6% and 90.4% \((P = 0.004 \) and primary patency rates of 32.8% and 83.1% \((P < 0.001 \), respectively. The patency rate in the DES group was also superior to that of the optimal PTA group, excluding patients who had acute PTA failure (83.1% versus 65.3%; \(P < 0.001 \)). These advantages of DES may appear at odds with the secondary clinical outcomes of ABI, Rutherford scores, and walking impairment scores, which all significantly improved \((P < 0.001 \) from before treatment to 12 months in both the PTA and primary DES groups (with no significant differences between the groups). However, these clinical outcomes include patients who had TLRs, and, importantly, as shown in Table 2, almost twice as many TLRs were required in the PTA group than the DES group \((17.5\% \text{ versus } 9.5\%, \ P = 0.01 \) to achieve these similar clinical outcomes.

The head-to-head randomized comparison of DES versus BMS for provisional stenting after acute PTA failure in 120 patients also showed significantly superior results with DES placement, with primary patency rates of 89.9% and 73.0%.
respectively \((P=0.01) \), at 12 months. This represents a greater than 60% reduction in restenosis rate with the paclitaxel-coated DES compared with the BMS.

Previous studies of nitinol BMS in the SFA have shown 12-month patency rates ranging from 63% to 81%,\(^{3,6-8}\) consistent with the 73.0% patency rate for the provisional BMS group in the present study. Previous studies of DES in the SFA include only SIROCCO I and II and STRIDES. The SIROCCO studies compared primary placement of self-expanding nitinol stents (S.M.A.R.T. stent, Cordis-Johnson

\[\text{Figure 3.} \text{ Twelve-month primary effectiveness outcomes (red and black curves). The black curve shows the 32.8\% primary patency rate for the percutaneous transluminal angioplasty (PTA) group (as prespecified, acute PTA failure was a loss of patency and accounts for the drop in the PTA patency curve on day 0), and the red curve shows the significantly higher (}\(P<0.001) 83.1\% primary patency rate for the drug-eluting stent (DES) group. The corresponding life table is included. Secondary evaluations also show that the primary patency rate for the DES (red curve) is (1) significantly higher (}\(P<0.001) \text{ than the 65.3\% primary patency rate for optimal PTA, a group that excludes patients who had acute PTA failure (dotted gray curve), and (2) significantly higher (}\(P=0.01) \text{ than the 73.4\% primary patency rate for PTA with provisional stent placement, a group that does not count acute PTA failure as a loss of patency and therefore consists of patients with optimal PTA (50\%) and those who underwent provisional bare metal stent (BMS) (25\%) and provisional DES (25\%) placement after acute PTA failure (solid gray curve).} \]

\[\text{Figure 4.} \text{ Secondary 12-month evaluation comparing the effectiveness of provisional bare metal stents (BMS) and drug-eluting stents (DES). The black curve shows the 73.0\% primary patency rate for patients undergoing provisional BMS placement after acute percutaneous transluminal angioplasty (PTA) failure; the red curve shows the significantly higher (}\(P=0.01) 89.9\% primary patency rate for patients undergoing provisional DES placement after acute PTA failure. The corresponding life table is included.} \]
lesion. Whereas previous SFA DES used nonresorbable binders, and kinetics of drug elution and retention at the target including stent design, drug and dosage, presence of polymer
enced by specific characteristic of the various devices, in-
Differences in SFA DES outcomes are probably also influ-
ted and interpreted cautiously, and recognized as generally
to vary between studies, cross-study comparisons should be
Because such factors are likely to vary between studies, cross-study comparisons should be made and interpreted cautiously, and recognized as generally inferior to comparisons made within randomized studies. Differences in SFA DES outcomes are probably also influenced by specific characteristic of the various devices, including stent design, drug and dosage, presence of polymer binders, and kinetics of drug elution and retention at the target lesion. Whereas previous SFA DES used nonresorbable polymers to bind sirolimus or everolimus to the stents, a distinguishing feature of the Zilver PTX stent is the polymer-free paclitaxel coating designed to help avoid the potential inflammatory and thrombotic reactions that may occur with polymers. Since stents were first placed in femoropopliteal arteries, the risk of stent fracture has been a concern. Early experience suggested that stent architecture, length of stented segment, overlapping stents, and extensive, bulky calcified lesions were associated with higher stent fracture rates. In one study, high fracture rates and more severe fractures were associated with increased restenosis rates. Initially published 12- to 18-month fracture rates for a variety of self-expanding nitinol stents range from 12% to 37%, depending on stented length. For moderate-length lesions similar to those in the present study, more recently published 12-month stent fracture rates range from 2.0% to 3.1%. The 12-month fracture rate for the combination of Zilver DES and BMS in this study was 0.9%, further suggesting that contemporary stent designs are more durable and substantially mitigate the fracture risk observed during early SFA stent trials.

Limitations

This study has several potential limitations. FDA policy mandated that the primary randomization of the investigational DES be to PTA because there was not an FDA-
approved, commercially available BMS available for the femoropopliteal arteries at the time of study enrollment. Therefore, the primary study end points compared PTA versus primary DES treatment (and showed significantly superior results with the DES). However, regulatory authorities allowed the study to include a secondary random assignment to treatment with either provisional BMS or DES immediately after acute PTA failure. Importantly, this pre-specified comparison of provisional BMS versus provisional DES treatment also showed significantly superior results with the DES.

Another potential limitation of this study is the high frequency of investigator-determined acute PTA failures (120/238, 50.4%), despite the protocol’s rigorous PTA requirements, and the encouragement of investigators to strive for optimal PTA. However, mean trans-stenotic pressure

Figure 5. Twelve-month posttreatment clinical benefit index results for primary drug-eluting stents (DES) compared with percutaneous transluminal angioplasty (PTA) treatment. The clinical benefit index was defined as freedom from persistent or worsening claudication, rest pain, ulcer, or tissue loss after the initial study treatment. The black curve shows that 75.8% of patients in the PTA group maintained clinical benefit; the red curve shows that 88.3% of patients in the primary DES group maintained clinical benefit ($P<0.001$). The corresponding life table is also included.

Figure 6. Twelve-month posttreatment clinical benefit index results for provisional drug-eluting stents (DES) compared with provisional bare metal stent (BMS) treatment. The clinical benefit index was defined as freedom from persistent or worsening claudication, rest pain, ulcer, or tissue loss after the initial study treatment. The black curve shows that 72.3% of patients undergoing provisional BMS placement after acute percutaneous transluminal angioplasty (PTA) failure maintained clinical benefit; the red curve shows that 90.5% of patients undergoing provisional DES placement after acute PTA failure maintained clinical benefit ($P=0.009$). The corresponding life table is included.
gradients ≥5 mm Hg supported 13 of the acute PTA failures, and arteriographic core laboratory measurements showing ≥30% DS confirmed 100 of the acute PTA failures, thereby justifying the investigators’ determinations the majority (94.2%) of the time. The frequency of acute PTA failure in similar recent stent studies of moderate length SFA lesions varies from 11% to 40%, complicating the comparative analysis of trial results.3,6,8

Although the study included evaluation of ABI, WIQ, and Rutherford classification, it did not include treadmill exercise testing, which has been used as a functional end point in some other recent SFA trials.3 However, the posttreatment clinical benefit index (defined as freedom from persistent or worsening claudication, rest pain, ulcer, or tissue loss after the initial study treatment) was included as a secondary clinically based evaluation of patient benefit.

Finally, although the results indicate that the paclitaxel-coated DES delivers superior EFS and patency compared with PTA and provisional BMS placement and support the conclusion that the DES is safe and effective for treatment of patients with moderate length de novo or restenotic lesions of the SFA and proximal popliteal artery, caution should be used when translating these results to treatment of a broader spectrum of femoropopliteal lesions. This is especially important when considering very long segments of disease, which were not included in this trial as per the FDA-mandated protocol exclusion of lesions longer than 14 cm.

Conclusion

The Zilver PTX Randomized Clinical Study demonstrated that implantation of a polymer-free, paclitaxel-coated nitinol DES in patients with moderate-length lesions of the SFA and proximal popliteal artery is safe and is associated with superior 12-month patency compared with both PTA and provisional BMS placement.

Acknowledgments

The authors thank Dr Jeffrey Popma and the team at Brigham and Women’s Hospital Angiographic Core Laboratory, Boston, MA, for arteriographic and radiographic imaging analysis; Dr Michael Jaff and the team at VasCore, Massachusetts General Hospital, Boston, MA, for duplex ultrasonography imaging analysis; and Jennifer A. McCann-Brown, PhD, Aaron Lottes, PhD, Beth Hess, PhD, and Alan Saunders, MS, of MED Institute, Inc (a contract research organization and Cook Group Company) for assistance with data analysis and manuscript preparation.

Sources of Funding

The study was sponsored by Cook Medical.

Disclosures

Dr Dake received speaking honorarium and travel grants from Cook Medical and consulting fees from Abbott Vascular and WL Gore. Dr Ansel received consulting fees, travel grants, payment for review activities, lectures, and royalties for a device unrelated to this study from Cook Medical; he is an advisor for Cordis Endovascular, Boston Scientific, and Abbott Vascular. Dr Jaff is a member of VIVA Physicians, Inc, a noncompensated consultant for Boston Scientific, Abbott Vascular, Cordis Corporation, Covidien, and Medtronic Vascular, and holds equity investment in Icon Interventional, I.C. Sciences, Micell Technologies, Nexeon Medical Systems, PQ Bypass Inc, Primacea, Trireme/TMI, and Vascular Therapies. Dr Jaff has no financial relationship with Cook Medical. Dr Ohki received travel grants and payment for the development of educational materials from Cook Medical. Dr Saxon received consulting fees, travel grants, and payment for review activities from Cook Medical; he also received consulting fees from WL Gore and Atheromed and travel grants, payment for the development of educational materials, and payment for manuscript preparation from WL Gore and holds stock options in Atheromed. Dr Smouse received consulting fees from Cook Medical. Dr Machan received travel grants from Cook Medical and holds stock options in Anglo-tech Pharmaceuticals. Dr Zeller received consulting fees and payment for lectures from Cook Medical; he received consulting fees from Medrad Possis, ev3, CR Bard, Straub Medical, Ardian, Gore, Cordis Corporation, and Biotronik, and payment for lectures from Cordis Corporation, ev3, Medtronic Invatec, Sanofi-Aventi, Medrad Possis, WL Gore, and Pathway Medical and serves on the board for Medtronic Invatec, Angiodesis, and Avidal Vascular. Dr Roubin received travel grants and royalties for a device not related to this study from Cook Medical. Dr Burket received consulting fees and travel grants from Cook Medical; he received consulting fees from Cook Medical and the IDEV DMSB and lecture fees from Bristol-Meyers Squibb/Sanofi-Aventis. Dr White received travel grants from Cook Medical. Dr Snyder and Ragheb are paid employees of MED Institute, a contract research organization and Cook Group Company.

References

Paclitaxel-Eluting Stents Show Superiority to Balloon Angioplasty and Bare Metal Stents in Femoropopliteal Disease: Twelve-Month Zilver PTX Randomized Study Results
Michael D. Dake, Gary M. Ansel, Michael R. Jaff, Takao Ohki, Richard R. Saxon, H. Bob Smouse, Thomas Zeller, Gary S. Roubin, Mark W. Burket, Yazan Khatib, Scott A. Snyder, Anthony O. Ragheb, J. King White and Lindsay S. Machan

Circ Cardiovasc Interv. 2011;4:495-504; originally published online September 27, 2011;
doi: 10.1161/CIRCINTERVENTIONS.111.962324
Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/4/5/495

Data Supplement (unedited) at:
http://circinterventions.ahajournals.org/content/suppl/2011/09/27/CIRCINTERVENTIONS.111.962324.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Interventions can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Interventions is online at:
http://circinterventions.ahajournals.org//subscriptions/
Supplemental Material

The manuscript was written on behalf of the Zilver PTX investigators, which included Dr. John Angle, University of Virginia Medical Center, Charlottesville, VA; Dr. Gary Ansel, MidWest Cardiology Research Foundation, Columbus, OH; Dr. James Benenati, Baptist Cardiac and Vascular Institute, Miami, FL; Dr. Nelson Bernardo, Washington Hospital Center, Washington, DC; Dr. Paul Bove, William Beaumont Hospital, Royal Oak, MI; Dr. Mark Burket, University of Toledo Medical Center, Toledo, OH; Dr. Gustavo Cardenas, JFK Medical Center, Atlantis, FL; Dr. Jeffrey Carpenter, University of Pennsylvania, Philadelphia, PA; Dr. Michael Dake, Stanford University Medical Center, Stanford, CA; Dr. George Daniel, The Care Group, Indianapolis, IN; Dr. Rajesh M. Dave, Pinnacle Health, Harrisburg, PA; Dr. Gregory Elsner, The Care Group, Indianapolis, IN; Dr. Naim Farhat, EMH Regional Medical Center, Elyria, OH; Dr. Robert Feezor, University of Florida College of Medicine, Gainesville, FL; Dr. Joan Frisoli, Stanford University Medical Center, Stanford, CA; Dr. Seth Fritcher, Peripheral Vascular Associates, San Antonio, TX; Dr. John Gill, Prairie Heart Medical Center, Springfield, IL; Dr. Bruce Gray, Greenville Memorial Hospital, Greenville, SC; Dr. Patrick Hall, South Carolina Heart Center, Columbia, SC; Dr. Colleen Harker, LDS Hospital, Salt Lake City, UT; Dr. James Joye, El Camino Hospital, Mountain View, CA; Dr. Barry Katzen, Baptist Cardiac and Vascular Institute, Miami, FL; Dr. Yazan Khatib, First Coast Cardiovascular, Jacksonville, FL; Dr. Kimihiko Kichikawa, Nara Medical University, Nara, Japan; Dr. Takeshi Kimura, Kyoto University Hospital, Kyoto, Japan; Dr. Katherine Krol, St. Vincent Hospital, Indianapolis, IN; Dr. Christopher Kwolek, Massachusetts General Hospital, Boston, MA; Dr. John Lantis, St. Luke’s Roosevelt Hospital Center, New York, NY; Dr. Steven Laster, Saint Luke’s Hospital, Kansas
City, MO; Dr. Anthony Lee, University of Florida Medical Center, Gainesville, FL; Dr. Evan Lipsitz, Montefiore Medical Center, New York, NY; Dr. Mahmoud Malas, Johns Hopkins Bayview Medical Center, Baltimore, MD; Dr. Thomas Maldonado, New York University Medical Center, New York, NY; Dr. Gordon McLean, Western Pennsylvania Hospital, Pittsburgh, PA; Dr. Mark Mewissen, St. Luke’s Medical Center, Milwaukee, WI; Dr. Sanjay Misra, Mayo Clinic, Rochester, MN; Dr. Robert Molnar, Michigan Vascular Center, Flint, MI; Dr. Nicholas Morrissey, New York Presbyterian Hospital – Columbia and New York Presbyterian Hospital – Cornell, New York, NY; Dr. Patrick Muck, Good Samaritan Hospital, Cincinnati, OH; Dr. Kannan Natarajan, St. Vincent Hospital, Indianapolis, IN; Dr. Takao Ohki, Jikei University Hospital, Tokyo, Japan; Dr. Gregory Pierce, Cleveland Clinic, Cleveland, OH; Dr. Rodney Raabe, Sacred Heart Medical Center, Spokane, WA; Dr. Venkatesh Ramaiah, Arizona Heart Institute, Phoenix, AZ; Dr. Bhagat Reddy, Piedmont Hospital, Atlanta, GA; Dr. John Reilly, Ochsner Clinic Foundation, New Orleans, LA; Dr. Jens Ricke, Universitätsklinikum Magdeburg, Magdeburg, Germany; Dr. Michael Rinaldi, Carolinas Medical Center, Charlotte, NC; Dr. William Romano, William Beaumont Hospital, Royal Oak, MI; Dr. Gary Roubin, Lenox Hill Hospital, New York, NY; Dr. Christof Ruhlmann, Gemeinschaftspraxis, Leipzig, Germany; Dr. Lowell Satler, Washington Hospital Center, Washington, DC; Dr. Richard Saxon, Tri-City Medical Center, Oceanside, CA; Dr. Dierk Scheinert, Heart Center Leipzig, Leipzig, Germany; Dr. Mark Schermerhorn, Beth Israel Deaconess Medical Center, Boston, MA; Dr. H. Bob Smouse, OSF St. Francis Medical Center, Peoria, IL; Dr. Daniel Sze, Stanford University Medical Center, Stanford, CA; Dr. Charles Thompson, Orlando Regional Medical Center, Orlando, FL; Dr. Brian Walton, Methodist Hospital, Houston, TX; Dr. J. King White, Christus St. Patrick Hospital, Lake Charles, LA; Dr. Edward Woo, University of Pennsylvania,
Philadelphia, PA; Dr. Hiroyoshi Yokoi, Kokura Memorial Hospital, Fukuoka, Japan; and Dr. Thomas Zeller, Herz Zentrum, Bad Krozingen, Germany.