Percutaneous Coronary Intervention Versus Optimal Medical Therapy in Stable Coronary Artery Disease
A Systematic Review and Meta-Analysis of Randomized Clinical Trials

Seema Pursnani, MD, MPH; Frederick Korley, MD; Ravindra Gopal, MBA, MPH; Pushkar Kanade, MBBS, MPH; Newry Chandra, MBBS, MPH; Richard E. Shaw, PhD, MA; Sripal Bangalore, MD, MHA

Background—The role of percutaneous coronary intervention (PCI) in the management of stable coronary artery disease remains controversial. Given advancements in medical therapies and stent technology over the last decade, we sought to evaluate whether PCI, when added to medical therapy, improves outcomes when compared with medical therapy alone.

Methods and Results—We performed a systematic review and meta-analysis, searching PubMed, EMBASE, and CENTRAL databases, until January 2012, for randomized clinical trials comparing revascularization with PCI to optimal medical therapy (OMT) in patients with stable coronary artery disease. The primary outcome was all-cause mortality, and secondary outcomes included cardiovascular death, nonfatal myocardial infarction, subsequent revascularization, and freedom from angina. Primary analyses were based on longest available follow-up with secondary analyses stratified by trial duration, with short-term (≤ 1 year), intermediate (1–5 years), and long-term (≥ 5 years) time points. We identified 12 randomized clinical trials enrolling 7182 participants who fulfilled our inclusion criteria. For the primary analyses, when compared with OMT, PCI was associated with no significant improvement in mortality (risk ratio [RR], 0.85; 95% CI, 0.71–1.01), cardiac death (RR, 0.71; 95% CI, 0.47–1.06), nonfatal myocardial infarction (RR, 0.93; 95% CI, 0.70–1.24), or repeat revascularization (RR, 0.93; 95% CI, 0.76–1.14), with consistent results over all follow-up time points. Sensitivity analysis restricted to studies in which there was >50% stent use showed attenuation in the effect size for all-cause mortality (RR, 0.93; 95% CI, 0.78–1.11) with PCI. However, for freedom from angina, there was a significant improved outcome with PCI, as compared with OMT (RR, 1.20; 95% CI, 1.06–1.37), evident at all of the follow-up time points.

Conclusions—In this most rigorous and comprehensive analysis in patients with stable coronary artery disease, PCI, as compared with OMT, did not reduce the risk of mortality, cardiovascular death, nonfatal myocardial infarction, or revascularization. PCI, however, provided a greater angina relief compared with OMT alone, larger studies with sufficient power are required to prove this conclusively. (Circ Cardiovasc Interv. 2012;5:476-490.)

Key Words: angina ■ coronary artery disease ■ optimal medical therapy ■ percutaneous coronary intervention

Coronary artery disease (CAD) is the leading cause of death worldwide, contributing to over 7.2 million deaths annually. Early revascularization has been well validated to show a reduction in cardiovascular events in the management of ST segment elevation myocardial infarction. In addition, revascularization has been shown to improve cardiovascular outcomes in the management of non-ST segment elevation myocardial infarction and unstable angina. However, the optimal treatment strategy of nonacute CAD, manifest clinically as stable angina, is not well defined. Current guidelines for the management of stable angina emphasize risk factor modification, namely smoking cessation, exercise, diabetes mellitus management, lipid lowering, antianginal, and antihypertensive therapies. With advancements in medical therapies over the last 2 decades, it is unclear whether percutaneous coronary intervention (PCI) provides a prognostic advantage over optimal medical therapy (OMT) in the management of stable angina patients.

Recent trials including Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) and Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) have shown no...
significant difference in outcomes in the treatment of stable angina patients with revascularization versus OMT alone. Several reviews and meta-analyses have been conducted to determine the role of PCI in patients with stable CAD, with some suggesting a greater relief of angina symptoms (odds ratio, 1.69; 95% CI, 1.24-2.30),19,20 and others showing no improvement in death, myocardial infarction (MI), or need for subsequent revascularization using the invasive strategy,21 though an analysis in 2008 by Schömig et al,22 incorporating data from the large Swiss Interventional Study on Silent Ischemia Type II (SWISS-II)23 and COURAGE trials, suggested an improvement in all-cause mortality in the revascularized group (odds ratio, 0.80; 95% CI, 0.64–0.99). This analysis included trials in which the revascularization group combined patients undergoing PCI or coronary artery bypass grafting (CABG), and also included those without stable CAD (ie, those patients with a recent acute coronary syndrome).

The objective of this review was to determine whether revascularization with PCI reduces cardiovascular outcomes when compared with OMT in patients with stable CAD.

WHAT IS KNOWN
• The optimal management of stable coronary artery disease is controversial. With evolving percutaneous coronary intervention strategies and novel medical therapies, the best evidence-based treatment strategy is unknown.

WHAT THE STUDY ADDS
• In this meta-analysis of 7182 individuals, percutaneous coronary intervention, as compared with optimal medical therapy, did not reduce the risk of mortality, cardiovascular death, nonfatal myocardial infarction, or revascularization.
• Revascularization with percutaneous coronary intervention was associated with greater angina relief, compared with optimal medical therapy alone.
• It is unknown whether the above results hold true in the contemporary era of third generation drug-eluting stents and contemporary medical management.
• Larger studies with sufficient power are required to detect contemporary differences in treatment strategies.

Methods
Eligibility Criteria
We conducted PubMed, EMBASE, and CENTRAL searches (until January 2012) using medical subject heading and keyword terms related to the diagnosis of stable CAD, the intervention of PCI, and comparison of medical therapy. No imposed language or date restrictions were applied. Our search strategy in PubMed incorporated the Cochrane Highly Sensitive Search Strategy for identification of randomized clinical trials.24 The details of the search strategies are listed in the online-only Data Supplement Appendix. After identification of eligible articles for inclusion in the systematic review, we searched the Web of Science citation index to identify any potentially relevant articles that were cited by our included articles. We also searched the reference list of previously published meta-analyses20–22 and the original articles identified for full text review to find other eligible trials.

Eligible trials fulfilled the following criteria: (1) cohort enrolled being stable CAD patients, CAD defined by coronary angiography or a positive functional study consisting of exercise or pharmacologic stress testing; (2) comparing PCI to OMT; and (3) reporting of at least one of the following outcomes: all-cause mortality, cardiovascular death, nonfatal MI, revascularization, or freedom from angina. We excluded trials enrolling patients who were documented to have had an acute coronary syndrome within 1 week preceding trial entry with the goal of excluding potentially unstable patients. The intervention of PCI was defined as percutaneous transluminal coronary angioplasty with or without bare metal stent or drug-eluting stent (DES) placement. Trials where CABG was used as the revascularization technique were excluded. In 3-arm trials, where OMT was compared with CABG and PCI, only data from the PCI and medical therapy arms was included. Two armed trials where medical therapy was compared with revascularization, and PCI or CABG were not distinctly categorized, were excluded. OMT was defined as a medical regimen consisting of at least an antplatelet, antiangiinal, and lipid-lowering therapy.

Selection and Quality Assessment
The results of the searches were compiled using the RefWorks software. After removal of duplicates, reviewers (S.P, F.K, R.G, N.C) screened each study by title and abstract for inclusion, with each study reviewed by 2 independent reviewers. Those studies that qualified for full text review were again reviewed independently by 2 reviewers for inclusion into the analysis. Two reviewers performed data abstraction (see below) and independently assessed the included studies for sources of systematic bias, as per the Cochrane Handbook for Systematic Reviews of Interventions.25 Specifically, sequence generation for randomization, allocation concealment, masking of outcome assessors, incomplete outcome data, selective outcome reporting, and other sources of bias including industry funding were assessed in detail. Any disagreements between reviewers were resolved by consensus and if necessary, adjudicated by a third reviewer. For those trials conducted more recently in North America,16,17 we assessed selective outcome reporting bias by identification of clinical trials through ClinicalTrials.gov to compare a priori outcomes with reported outcomes.

Data Extraction and Synthesis
Two independent reviewers (S.P, F.K.) abstracted data from included studies using a uniform data abstraction form for each study, with the second reviewer reentering data using double-data entry. Data abstracted included study characteristics, patient characteristics, details regarding the intervention and comparison group, and outcome measures. For the primary (all-cause mortality) and each of the secondary (cardiovascular death, nonfatal MI, repeat revascularization, and freedom from angina) outcomes, crude data was collected for the PCI and OMT groups. Where available, outcome data were abstracted at multiple follow-up time points. For trials using survival analysis design, 1-year event rates were extrapolated from the Kaplan-Meier survival curves using the Kaplan-Meier rates, in addition to the final time point data.

Statistical Analysis
Intention-to-treat meta-analysis was performed using the RevMan software provided by Cochrane Collaboration.26 We assessed heterogeneity by assessing both $\chi^2$ test for heterogeneity and $I^2$ statistic to determine the proportion of variation attributable to heterogeneity among studies (nonoverlapping CIs or an $I^2>$50% suggesting significant heterogeneity). The pooled effect estimate was calculated for all included trials on the basis of longest duration of follow-up, and based upon subgroups defined by trial follow-up duration (≤1 year, 1–5 years, and ≥5 years defined as short-, intermediate-, and long-term, respectively) using the Mantel-Haenszel method. Risk ratios for each outcome were calculated using the DerSimonian and Laird random-effects model.27 Given the heterogeneity in the study design and variability in the definition of optimal medical therapy and PCI use a random-effects model rather than a fixed-effect model was considered more appropriate. Publication bias was estimated visually by funnel plots.
Sensitivity Analyses

A sensitivity analysis evaluating trials with industry funding was conducted to determine potential impact on our summary effect measures. Given the evolution of PCI over the last 2 decades, we also performed a sensitivity analysis to evaluate the potential differential effect of stenting (either bare metal stent or DES) in our comparison of PCI to medical therapy by evaluating separately those studies in which over 50% of participants received stents, as opposed to balloon angioplasty alone. We planned to also perform a sensitivity analysis removing studies of low methodological quality, based upon our bias assessment, but all included studies fared similarly on the risk of bias assessment, most with unknown information regarding allocation concealment and outcome assessor masking. We did not find 1 or more studies to be of significantly greater bias and therefore did not pursue this sensitivity analysis.

Results

Study Selection

We identified 12 randomized clinical trials that fulfilled our inclusion criteria (Figure 1). Enrollment of participants was conducted across the world, with only 2 conducted exclusively in the United States. The trials enrolled a total of 7182 patients who were followed-up for a mean of 4.9 years (range 1.5–10.2 years).

Baseline Characteristics

The baseline characteristics of the included trials are summarized in Table 1 and clinical characteristics of the participants are detailed in Table 2. Enrolled participants were predominantly men, middle aged, and with typical CAD risk factors of hypertension, hyperlipidemia, and diabetes mellitus. Within each trial, baseline characteristics were similar between the PCI and medical therapy groups.

Severity of underlying CAD varied among trials. The Randomized Comparison of Percutaneous Transluminal Coronary Angioplasty and Medical Therapy in Stable Survivors of Acute Myocardial Infarction with Single Vessel Disease: A Study of the Arbeitsgemeinschaft Leitended Kardiologische Krankenhausarzte (ALKK) and SWISS-II trials enrolled exclusively patients who had a ST segment elevation myocardial infarction within 42 days or 3 months, respectively, in a more stable period after acute MI. However, both trials had excluded those with cardiac events within 1 week of randomization, thus allowing inclusion into our systematic review. A preserved left ventricular ejection fraction was a requirement for most studies, with an left ventricular ejection fraction above 50% in all reported trials.

Inducible or reversible ischemia on stress testing was a prerequisite to study inclusion, with the exception of DEFER, where participants with reversible ischemia on noninvasive testing were excluded, presumably due to a favored practice of PCI in this group. The number of affected vessels varied; although the Veterans Affairs Cooperative Study: Angioplasty Compared to Medicine (ACME-1) and Medicine, Angioplasty, or Surgery Study (MASS-1) enrolled exclusively participants with 1 vessel CAD, the remaining included those with double or triple vessel CAD.

Angioplasty without stenting was performed in majority of included trials. Only the BARI 2D, COURAGE, MASS-2 and Japanese Stable Angina Pectoris (JSAP) trials performed angioplasty with stenting during PCI in over 50% participants; of those who received stents, generally only a small fraction received DES, whereas the majority of stents placed during

Figure 1. Study selection. The flowchart depicts the selection of studies for inclusion in the meta-analysis. PCI indicates percutaneous coronary intervention; MI, myocardial infarction; CABG, coronary artery bypass grafting.
<table>
<thead>
<tr>
<th>Study Years of Enrolment, Country or Region</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Description of Intervention</th>
<th>Description of Medical Therapy</th>
<th>Primary Outcome</th>
<th>Secondary Outcomes</th>
<th>Follow Up, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACME-11987–1990 USA</td>
<td>70%–99% stenosis in proximal two thirds of 1 major coronary artery, stress test with ≥1 mm ST depression in at least 1 lead or filling defect on thallium scan, or MI in past 3 mo</td>
<td>Not reported</td>
<td>PTCA</td>
<td>325 mg Aspirin, nitrates, β-blockers, calcium channel blockers</td>
<td>6 mo exercise stress testing: length of time to onset of 1 mm ST segment depression, maximal ST depression, maximal work product</td>
<td>Change in degree of stenosis in index lesion, physical well being questionnaire, employment status</td>
<td>3</td>
</tr>
<tr>
<td>ACME-2 1987–1990 USA</td>
<td>History of angina, MI within 3 mo, or ≥3 mm horizontal ST depression on exercise testing; ≥70% stenosis in proximal two thirds of 1 or 2 coronary arteries (data for 1 vessel CAD previously presented as ACME-1)</td>
<td>Unstable angina refractory to medical therapy, prior PCI, primary cardiac diagnosis other than CAD, ≥50% left main stenosis, 3 vessel CAD, LVEF&lt;30%</td>
<td>PTCA</td>
<td>Aspirin plus individualized therapy of Nitrates, β-blockers, and Calcium channel blockers</td>
<td>Primary/secondary outcomes not individually described</td>
<td>Angina frequency, 6 mo exercise tolerance testing and angiography: change in exercise duration, time to onset of angina, maximal rate-pressure product, percent diameter stenosis of index lesions</td>
<td>Median 5</td>
</tr>
<tr>
<td>ALKK 1994–1997, Germany</td>
<td>Post STEMI 8–42 d with feasible PTCA or recanalization of culprit artery, CCS Class I or II angina</td>
<td>CCS Class III or IV angina, &gt;70% stenosis in another coronary artery, CABG graft as infarct vessel, need for CABG (left main stenosis, LV aneurysm, significant valve disease), noncardiac disease reducing life expectancy</td>
<td>PTCA, BMS</td>
<td>100 mg aspirin, β-blockers, and additional medications per physician discretion</td>
<td>Composite of survival free of reinfarction, ischemia driven PCI or CABG, or rehospitalization for severe angina at 1 y</td>
<td></td>
<td>Mean 4.7</td>
</tr>
<tr>
<td>AVERT 1995–1996, North America, Europe</td>
<td>≥50% stenosis of at least 1 coronary artery for which PCI was recommended, asymptomatic or with CCS I or II angina, completion of at least 4 min of stress test without ischemia, LDL≥115 mg/dL, and triglycerides &lt;500 mg/dL</td>
<td>Left main disease, 3 vessel CAD, unstable angina, MI in prior 2 wk, LVEF&lt;40%</td>
<td>PTCA, BMS, atherectomy</td>
<td>80 mg atorvastatin</td>
<td>Composite of ischemic event, which included cardiac death, resuscitation after cardiac arrest, nonfatal MI, stroke, PCI, CABG, and worsening angina requiring hospitalization</td>
<td>Individual components of primary endpoint</td>
<td>1.5</td>
</tr>
<tr>
<td>BARI 2D 2001–2005 North and South America, Europe</td>
<td>≥50% stenosis of major coronary artery with positive stress test or ≥70% stenosis of major coronary artery with classic angina and type 2 diabetes mellitus</td>
<td>Need for immediate revascularization, left main disease, creatinine &gt;2 mg/dL, glycated hemoglobin &gt;13%, class III or IV heart failure, hepatic dysfunction, PCI, or CABG in previous 12 mo</td>
<td>PTCA, BMS, DES</td>
<td>Aspirin, statins, β-blockers, and ACE or ARB; insulin and oral hypoglycemic therapy</td>
<td>All-cause mortality</td>
<td>Composite of all-cause mortality MI, or stroke</td>
<td>5</td>
</tr>
</tbody>
</table>

(Continued)
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Study Years of Enrolment, Country or Region</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Description of Intervention</th>
<th>Description of Medical Therapy</th>
<th>Primary Outcome</th>
<th>Secondary Outcomes</th>
<th>Follow Up, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURAGE 1999–2004 North America</td>
<td>≥70% stenosis in at least 1 proximal artery, inducible ischemia on stress testing or ST depression or TWI on resting EKG</td>
<td>CCS class IV angina, substantial ST depression or hypotension during Bruce protocol stage 1 stress testing, refractory heart failure or cardiogenic shock, LVEF &lt;30%, revascularization in prior 6 mo, coronary anatomy not suitable for PCI</td>
<td>PTCA, BMS, DES</td>
<td>81–325 mg aspirin and 75 mg clopidogrel; long-acting metoprolol and amiodipine and nitrates; lisinopril or losartan; simvastatin alone or with ezetimibe; extended-release niacin and fibrates if needed</td>
<td>Composite of all-cause mortality and nonfatal MI</td>
<td>Composite of all-cause mortality, MI, stroke, and hospitalization for unstable angina; angina functional class (CCS scale); Quality of life; resource use; cost-effectiveness</td>
<td>Median 4.6</td>
</tr>
<tr>
<td>DEFER 1997–1998 Europe, Asia</td>
<td>Angiography with &gt;50% stenosis in native coronary artery and FFR ≥0.75, no evidence of reversible ischemia by noninvasive testing within the previous 2 mo</td>
<td>Total occlusion of the target artery, Q-wave infarction, unstable angina, or small target arteries</td>
<td>PTCA, BMS</td>
<td>Statins, β-blockers, nitrates</td>
<td>Composite of all-cause mortality, MI, CABG, PCI, and any procedure-related complication requiring major intervention or prolonged hospital stay</td>
<td>Freedom from angina (CCS I) and the use of anti-anginal drugs</td>
<td>2</td>
</tr>
<tr>
<td>JSAP 2002–2004 Japan</td>
<td>≥75% (or ≥60%) on quantitative coronary angiography) 1 or 2 vessel CAD, inducible ischemia on stress testing or ST depression or T-wave inversion on resting EKG</td>
<td>Three vessel CAD, left main or ostial LAD disease, total occlusion, ACS, LVEF &lt;50%, tendency to bleed, disseminated intravascular coagulation, severe pneumonia, creatinine &gt;1.5 mg/dL, graft stenosis, low-risk CAD where PCI or medical therapy had already been prescribed</td>
<td>PTCA, BMS</td>
<td>Entirely physician-dependent (majority received aspirin or other antiplatelet, β-blockers, nitrates, Statins, ACE/ARB)</td>
<td>Composite of all-cause mortality, MI, stroke, emergent hospitalization requiring intensive care</td>
<td>Angina functional class (CCS scale), elective repeat revascularization</td>
<td>3.3</td>
</tr>
<tr>
<td>MASS-11 988–1991 Brazil</td>
<td>≥80% LAD stenosis before takeoff of first diagonal branch, single vessel CAD</td>
<td>Total occlusion, lesion length &gt;12 mm, involvement of the ostium, heavy calcification, severe tortuosity, left main disease, unstable angina, prior MI, significant valvular disease, cardiomyopathy, LV dysfunction, prior PCI or CABG</td>
<td>PTCA</td>
<td>Aspirin, nitrates, β-blockers</td>
<td>Composite of cardiac death, MI, or refractory angina requiring revascularization; surgical revascularization in PCI group</td>
<td>Angina functional class (CCS scale), employment status, positive stress test 2 y after enrolment, degree of CAD at 2 y angiographic follow-up</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Study Years of Enrolment, Country or Region</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Description of Intervention</th>
<th>Description of Medical Therapy</th>
<th>Primary Outcome</th>
<th>Secondary Outcomes</th>
<th>Follow Up, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS-2 1995–2000 Brazil</td>
<td>≥70% proximal multivessel stenosis and documented ischemia by stress testing or CCS II or III</td>
<td>Unstable angina, acute MI requiring emergent revascularization, ventricular aneurysm requiring surgical repair, LVEF&lt;40%, prior PCI or CABG, single vessel CAD, congenital heart disease, valvular heart disease, cardiomyopathy, left main stenosis ≥50%, unable to comply with protocol or follow up, suspected or known pregnancy</td>
<td>PTCA, BMS, lasers, atherectomy</td>
<td>Aspirin, nitrates, β-blockers, calcium channel blockers, ACE inhibitors, statins</td>
<td>Composite of cardiac death, MI, or refractory angina requiring revascularization</td>
<td>Freedom from angina and stroke</td>
<td>5</td>
</tr>
<tr>
<td>RITA-2 1992–1996 United Kingdom and Ireland</td>
<td>Angiography with ≥50% (2 views) or ≥70% (1 view) stenosis in at least 1 major artery amenable to PTCA, recent unstable angina at least 7 d before randomization</td>
<td>Revascularization necessary for symptom relief or prognostic benefit, prior revascularization, significant left main disease, ACS in the previous 7 d, hemodynamically significant valve disease, or life-threatening noncardiac disease</td>
<td>PTCA; BMS or atherectomy if PTCA unsatisfactory</td>
<td>Aspirin, β-blockers, calcium channel blockers, long-acting nitrates at maximally tolerated doses, lipid-lowering drugs only as needed</td>
<td>Composite of all-cause mortality and nonfatal MI</td>
<td>Revascularization with PCI or CABG, heart failure, arrhythmia, stroke, or transient ischemic attack</td>
<td>7</td>
</tr>
<tr>
<td>SWISS-2 1991–1997 Switzerland</td>
<td>First STEMI or non-STEMI within 3 preceding mo, no malignancy, 1–2 vessel CAD on angiography and silent ischemia on maximal exercise stress testing with imaging</td>
<td>3 vessel CAD, coronary lesions not technically amenable to PCI</td>
<td>PTCA</td>
<td>100 mg aspirin, statin, 5–10 mg bisoprolol, 5–10 mg amiodarone, 4–12 mg BID Molsidomine; ACE inhibitor if HTN</td>
<td>Composite of cardiac death, nonfatal recurrent MI (including silent MI) and symptom-driven revascularization with PCI or CABG</td>
<td>Individual components of primary outcome and noncardiac death, all-cause death, angina not leading to revascularization</td>
<td>Mean (SD)10.2 (2.6)</td>
</tr>
</tbody>
</table>

ACE indicates angiotensin converting enzyme; ACME, Angioplasty Compared to Medicine; ACS, acute coronary syndrome; ALKK, Arbeitsgemeinschaft Leitender Kardiologische Krankenhausärzte; ARB, angiotensin receptor blocker; AVERT, Atorvastatin vs revascularization treatment; BARI 2D, Bypass Angioplasty Revascularization Investigation 2 Diabetes; BMS, bare metal stent; CABG, coronary artery bypass grafting; CAD, coronary artery disease; CCS, Canadian classification system; COURAGE, Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; DES, drug eluting stent; DBP, diastolic blood pressure; FFR, fractional flow reserve; HTN, hypertension; JSAP, Japanese Stable Angina Pectoris; LAD, left anterior descending; LDL, low-density lipoprotein; LVEF, left ventricular ejection fraction; MASS, Medicine, Angioplasty, or Surgery Study; MI, myocardial infarction; OMT, optimal medical therapy; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; RITA, Randomized Intervention Treatment of Angina; SBP, systolic blood pressure; STEMI, ST-Segment–Elevation Myocardial Infarction; SWISS, Swiss Interventional Study on Silent Ischemia.
### Table 2. Baseline Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>ACME-1</th>
<th>ACME-2</th>
<th>ALKK</th>
<th>AVERT</th>
<th>BARI 2D</th>
<th>COURAGE</th>
<th>DEFER</th>
<th>JSAP</th>
<th>MASS-1</th>
<th>MASS-2</th>
<th>RITA-2</th>
<th>SWIES-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number randomized</td>
<td>PCI OMT PCI OMT</td>
<td>105 107 51 50 149 151 90 90 798 807 1149 1138 90 91 1192 1192 72 72 205 203 504 514 96 105</td>
<td></td>
</tr>
<tr>
<td>Mean age in y (SD)</td>
<td>62 63 60 58.2 (9.2) 57.5 (9.8) 58 (0.6) 61(11) 61(11) 62(49.0) 61.5 (10.1) 61.8 (8.7) 61 (11) 61 (9) 64.5 (7.2) 64.2 (7.6) 54 (9) 58 (7) 60(9) 60(9) 5 54.4 (9.1) 56.2 (8.8)</td>
<td></td>
</tr>
<tr>
<td>Male, %</td>
<td>100 100 100 84 89 89 63 63 63 67 85 85 63 65 75 75 81 82 85 84 82 83 89 87</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus, %</td>
<td>17 19 18 15 9 9 100 32 32 34 82 66 67 34 36 63 63 34 38 30 27 NR NR 45 45</td>
<td></td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>52 53 NR 32 46 45 34 34 82 66 67 34 36 63 63 34 38 30 27 NR NR 45 45</td>
<td></td>
</tr>
<tr>
<td>Prior MI, %</td>
<td>33 28 45 100 100 100 40 21 21 30 38 39 21 29 14 15 0 0 25 19 47 46 100 100</td>
<td></td>
</tr>
<tr>
<td>Baseline LVEF (SD)</td>
<td>64.9 (1.1) 65.1 (1.3) 67 NR NR 61 66(7) 66(7) NR 60.8 (11.2) 60.9 (10.3)</td>
<td></td>
</tr>
<tr>
<td>Mean SBP (SE) in mm Hg</td>
<td>134 137 NR 128.8 (21.8) 127.2 (21.0)</td>
<td></td>
</tr>
<tr>
<td>Mean DBP (SE) in mm Hg</td>
<td>79 82 NR 76.3 (15.2) 77.6 (13.6)</td>
<td></td>
</tr>
<tr>
<td>Mean LDL (SD) in mg/dL</td>
<td>108 105 NR 149 (34) 149 (34)</td>
<td></td>
</tr>
<tr>
<td>% with 1/2/3 vessel CAD</td>
<td>0/0 0/100/0 NR NR NR NR NR NR NR NR NR 56/44/0 57/43/0 45/35/20 68/29/3 68/29/3 30/39/31 68/29/3 65/27/8 68/32/0 68/31/0 100/0 0 0/100/0 0/21/28 0/20/29 62/32/6 58/54/8 2.0* (1.0) 2.3* (1.3)</td>
<td></td>
</tr>
<tr>
<td>Stenting of PCI group at randomization, %</td>
<td>0 0 17 30 91 88 46 76 72 8 0 0</td>
<td></td>
</tr>
<tr>
<td>Medication usage, %</td>
<td>Aspirin</td>
<td>85 91 NR NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statin</td>
<td>NR NR NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other anti-lipid agent</td>
<td>NR NR NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β-blocker</td>
<td>30 50 NR NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrates</td>
<td>24 50 NR NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACE or ARB</td>
<td>NR NR NR</td>
<td></td>
</tr>
</tbody>
</table>

ACME indicates Angioplasty Compared to Medicine; ALKK, Arbeitsgemeinschaft Leitender Kardiologische Krankenhausarzte; AVERT, Alorvastatin versus Revascularization Treatment; BARI, Bypass Angioplasty Revascularization Investigation; COURAGE, Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; JSAP, Japanese Stable Angina Pectoris; MASS, Medicine, Angioplasty, or Surgery Study; RITA, Randomized Intervention Trial of unstable Angina; SWISS, Swiss Interventional Study on Silent Ischemia; PCI, percutaneous coronary intervention; OMT, optimal medical therapy; LVEF, left ventricular ejection fraction; NR, not reported; SBP, systolic blood pressure; MI, myocardial infarction; LDL, low-density lipoprotein; CAD, coronary artery disease; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker; DBP, diastolic blood pressure.

*Mean number of vessels.

†Any lipid lowering therapy (statin or nonstatin).
the time of these trials were bare metal stent. BARI 2D, the most recent of the trials included in this review, used DES in over one third of participants in the PCI group.

Medical regimens varied too, though, where reported, nearly all participants were taking at least a daily baby aspirin and most were on antianginal therapy with nitrates and β-blockers. Mean blood pressure and low-density lipoprotein values varied depending on the timing of the trial, due to the evolution of stricter targets (Table 2). Statin use varied with the more recent trials, namely COURAGE, MASS-2, and SWISS-II, reporting statin use in majority of participants. The Atorvastatin versus Revascularization Treatment (AVERT) trial, which was designed specifically to compare atorvastatin with PCI, used statins in all enrolled participants. With the exception of the AVERT trial, which used high dose atorvastatin, the other trials did not explicitly comment on statin dosing. Of note, medical therapies were, for the most part, used uniformly in both the PCI and medical therapy groups of each of the included trials. One exception was ACME-1, where all antianginal therapies were, for the most part, used uniformly in both the PCI and OMT groups in the overall analysis (RR, 0.93; 95% CI, 0.76–1.14) and at all time points (≤1 year, 1–5 years, and ≥5 year time points, respectively: RR, 1.49; 95% CI, 0.71–3.16; RR, 0.98; 95% CI, 0.74–1.30; RR, 0.99; 95% CI, 0.75–1.30) (Figure 5). There was notably significant statistical heterogeneity among trials included in this analysis at all time points. The older MASS-1 and ACME trials were outliers showing greater proportion of early repeat PCI or CABG required in the PCI group, possibly due to less experience and more complications during this era.

**Outcomes**

**All Cause Mortality**

Overall, there was no statistically significant difference in mortality between the PCI and OMT groups; the point estimate at the longest follow-up duration notably did favor the PCI group (risk ratio [RR], 0.85; 95% CI, 0.71–1.01) (Figure 2). Effect measures at the ≤1 year (RR, 1.34; 95% CI, 0.87–2.08) and 1 to 5 years (RR, 0.97; 95% CI, 0.56–1.69) time points showed no significant difference in mortality between the PCI and OMT groups, and a trend towards benefit with PCI was most apparent at the ≥5 years follow-up duration (RR, 0.82; 95% CI, 0.65–1.02). In the longest duration of follow-up, SWISS-2 and ALKK individually showed the most favorable effects of PCI over OMT; of note, these 2 trials included those with prior recent MI. The studies given greatest statistical weight in this analysis, BARI-2D and COURAGE, showed no significant difference in all-cause mortality between the 2 groups.

**Cardiovascular Death**

There was no statistically significant difference in cardiovascular death between the PCI and OMT groups (Figure 3). The point estimate in the longest follow-up duration analysis favored the PCI group (RR, 0.71; 95% CI, 0.47–1.06), and this difference was most apparent in those with trials with ≥5 years follow-up (RR, 0.70; 95% CI, 0.46–1.08) although these were not statistically significant. In those trials with <5 years follow-up, there was no significant difference in this outcome between the 2 groups (RR, 1.53; 95% CI, 0.69–3.38).

**Nonfatal MI**

We observed no difference in nonfatal MI between the PCI and OMT groups in the overall analysis (RR, 0.93; 95% CI, 0.70–1.24) and at each of the follow-up time points (Figure 4). For the ≤1 year, 1 to 5 years, and ≥5 year time points, we observed a RR, 0.82; (95% CI, 0.37–1.80), RR, 1.11; (95% CI, 0.47–2.59), and RR, 0.92; (95% CI, 0.67–1.27), respectively.

**Revascularization**

There was no difference in symptom-driven subsequent revascularization in the overall analysis (RR, 0.93; 95% CI, 0.76–1.14) and at all time points (≤1 year, 1–5 years, and ≥5 year time points, respectively: RR, 1.49; 95% CI, 0.71–3.16; RR, 0.98; 95% CI, 0.74–1.30; RR, 0.99; 95% CI, 0.75–1.30) (Figure 5). There was notably significant statistical heterogeneity among trials included in this analysis at all time points. The older MASS-1 and ACME trials were outliers showing greater proportion of early repeat PCI or CABG required in the PCI group, possibly due to less experience and more complications during this era.

**Freedom From Angina**

Overall, PCI was associated with a greater freedom from angina as compared with OMT (RR, 1.20; 95% CI, 1.06–1.37) (Figure 6). This benefit with PCI was evident at all follow-up durations (≤1 year, 1–5 years, and ≥5 year time points, respectively: RR, 1.32; 95% CI, 1.13–1.54; RR, 1.57; 95% CI, 1.06–2.32; RR, 1.17; 95% CI, 1.00–1.38).

**Sensitivity Analysis**

Only the AVERT trial was clearly industry sponsored, and sponsorship of DEFER was not reported. Removal of these studies showed no difference in overall mortality (RR, 0.82; 95% CI, 0.67–1.01).

BARI-2D, COURAGE, JSAP, and MASS-2 were the only trials to report over 50% stent use in the PCI arm. Considering only these trials, there was no significant difference in all-cause mortality (0.93; 95% CI, 0.78–1.11). Analysis by trial follow-up duration also revealed no significant difference (at the short-, intermediate, and long-term time points, respectively: RR, 1.48; 95% CI, 0.86–2.55; RR, 0.87; 95% CI, 0.30–2.54; and RR, 0.93; 95% CI, 0.78–1.12).

**Risk of Bias**

All included trials were published randomized clinical trials. Method of randomization was adequately described (computer generated or automated telephone system) in approximately half of the trials and allocation concealment was only explicitly reported in 1 trial. Masking of outcome assessors was described in the more recent trials (Randomized Intervention Trial of unstable Angina [RITA]-2.40,41 BARI-2D, JSAP, SWISS-2). Losses to follow-up were reported in all trials and with the exception of the ACME trials, where angina data at the final interview are missing, these participants encompassed <10% of total study participants. Intention-to-treat analysis was used in all trials. Most trials were free of selective outcome reporting and in addition, outcomes were predefined in the methods section of most included trials. The risk of bias across all studies is summarized in online-only Data Supplement, Figure I. Publication bias was assessed with the use of a funnel plot to address the primary outcome of all-cause mortality (online-only Data Supplement Figure II), with symmetry of the plot indicating no clear relationship in lack of publication by size of trial and effect estimate.
In this most updated analyses to-date, we observed no significant difference in outcomes of all-cause mortality, cardiovascular death, nonfatal MI, or need for symptom-driven subsequent revascularization with PCI when compared with OMT alone. However, the point estimate for all-cause mortality and cardiac death favored PCI and was most prominent in trials with longer duration of follow up, but was attenuated when the analyses were restricted to trials where stents were used. PCI, was associated with a greater freedom from angina in the overall analysis and at all studied time points.

In comparison to the meta-analysis published by Schömig et al, we added several large trials published in the interim (JSAP and BARI 2D). In addition, we used more stringent criteria in establishing a population of individuals with stable...
CAD, excluding those studies that included participants with an MI <1 week before enrollment. We also excluded studies that compared revascularization, defined as PCI or CABG, with medical therapy, in our aim to evaluate only nonsurgical revascularization. We excluded a study designed to compare revascularization with an exercise training program and a study in abstract form, where detailed methods could not be verified. Finally, we also evaluated the clinically meaningful outcomes of symptom-driven revascularization and freedom from angina. A prior analysis evaluating angina relief showed a similar benefit of PCI over OMT, although this meta-analysis notably included 4 trials that enrolled recent MI survivors. All outcomes in our analyses, as compared with prior analyses, were additionally stratified by time duration of follow-up.

It must be noted that there exists no standard definition for stable CAD. The trials included in this meta-analysis had varying angiographic definitions for significant coronary stenosis and only a minority clearly described a requirement for clinical symptoms of angina. Exclusion of trials enrolling participants within 1 week of an acute coronary syndrome aimed to identify a population of stable CAD patients. The ALKK and SWISS-2 trials notably fulfilled the inclusion criteria for this meta-analysis, but all participants had a recent MI, and therefore, may not reflect the same population of stable CAD patients included in the other trials.

Inclusion of trials published over the course of 2 decades notably presents considerable heterogeneity. Older trials used balloon angioplasty only, which has since proven to be inferior to angioplasty with stenting, due to high rates of subsequent restenosis. In addition, newer generation DES have been shown to be not only efficacious in having a very low rate of restenosis but also safe, with reduction in MI when compared with bare metal stents. Of note, only the COURAGE, MASS-2, JSAP, and BARI 2D trials used stents in the majority of participants and only COURAGE and BARI-2D used DES. It is therefore unknown whether the results of the present study can be extrapolated to contemporary cohorts. Moreover, medical therapies have advanced, with usage of high dose statins and antiplatelet therapy as standard of care. Our sensitivity analysis of studies in which

---

**Table 3.** Percutaneous coronary intervention (PCI) vs optimal medical therapy (OMT) for the risk of cardiac death. The forest plot depicts the individual trial and subtotal risk ratios and 95% CIs comparing the outcome of cardiac death for PCI vs OMT. The first plot shows the overall analysis, using available data for the longest duration of follow up, and subsequent plots are stratified by trial follow-up duration. ALKK indicates Arbeitsgemeinschaft Leitender Kardiologische Krankenhausarzte; BARI, Bypass Angioplasty Revascularization Investigation; COURAGE, Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; JSAP, Japanese Stable Angina Pectoris; MASS, Medicine, Angioplasty, or Surgery Study; RITA, Randomized Intervention Trial of unstable Angina; SWISS, Swiss Interventional Study on Silent Ischemia.

![Forest Plot](http://circinterventions.ahajournals.org/Downloaded from)

---

**Figure 3.** Percutaneous coronary intervention (PCI) vs optimal medical therapy (OMT) for the risk of cardiac death.
>50% stent use was performed, which were the more recently published trials, notably revealed no significant difference in all-cause mortality. This lack of difference perhaps emphasizes advancements and increasing use of effective medical therapies for patients with stable CAD. Yet, it must be noted that even the most recent trials in this meta-analysis do not use newer generation DES, do not achieve current guidelines for low-density lipoprotein targets, and do not demonstrate uniformly high usage of statin, β-blocker, and antianginal medications (Table 2).

The types of participants enrolled notably were heterogeneous, and generalization of effect measures to dissimilar populations should be undertaken with caution. Although we aimed to identify stable CAD participants, ALKK and SWISS-2 evaluated exclusively those individuals who had an MI roughly within 1 month before enrollment; PCI in these 2 studies appeared protective. Severity of CAD based on number of vessels involved also varied; COURAGE and MASS-2 notably included a high proportion of patients with triple vessel CAD, where surgical revascularization options must also be considered.
Study Limitations

We recognize several limitations to our analysis. Analysis of symptom-driven revascularization and freedom from angina outcomes is subjective and is also prone to reporting bias by providers and participants, respectively. As in other analyses, we were not able to adjust our analysis for the dosage of medications administered on the proportion of patients with stent usage, and are best assessed with an individual patient level meta-analysis. To complement our sensitivity analysis of those studies reporting >50% stent use in the PCI group, we would have preferred also to pursue an analysis of OMT, based upon contemporary guidelines. Given the evolving nature of medical therapies and variations in blood pressure and cholesterol targets at the time of the individual trials, such an analysis could not be pursued due to marked heterogeneity.
Conclusions

In summary, in patients with stable CAD there is no definitive evidence of an added benefit of PCI to reduce the risk of mortality, cardiac death, nonfatal MI, and need for revascularization, when compared with medical therapy alone. PCI appeared to show a benefit for all-cause mortality and cardiac death that was attenuated when recent studies (with more aggressive medical therapy) with a high proportion of stent use were analyzed. However, PCI provides a benefit over medical therapy in symptom relief of angina in patients with stable CAD.

A greater understanding of the pathophysiology of atherosclerosis has led to advancements in PCI with the advent of DES and improvements in medical therapies. In addition, the prior strategy trials have been criticized for enrolling participants after cardiac catheterization (creating selection bias), enrolling lower risk individuals (without significant ischemia) and with the use of DES (only first generation) in a small fraction of the cohort. Ongoing trials, such as the International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA), will test treatment strategies upstream of cardiac catheterization and involve patients with at least moderate ischemia, with the use of contemporary optimal medical and optimal revascularization strategies, with a sample size (N = 8000) large enough to detect small differences in outcomes.

Figure 6. Percutaneous coronary intervention (PCI) vs optimal medical therapy (OMT) for the risk of freedom from angina. The forest plot depicts the individual trial and subtotal risk ratios and 95% CIs comparing freedom from angina for PCI vs OMT. The first plot shows the overall analysis, using available data for the longest duration of follow up, and subsequent plots are stratified by trial follow-up duration. ACME indicates Angioplasty Compared to Medicine; ALKK, Arbeitsgemeinschaft Leitend Kardiologische Krankenhausarzte; AVERT, Atorvastatin versus Revascularization Treatment; BARI, Bypass Angioplasty Revascularization Investigation; COURAGE, Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; JSAP, Japanese Stable Angina Pectoris; MASS, Medicine, Angioplasty, or Surgery Study; RITA, Randomized Intervention Trial of unstable Angina; SWISS, Swiss Interventional Study on Silent Ischemia.
Disclosures

None.

References


Pursnani et al PCI for Stable Ischemic Heart Disease 489


Percutaneous Coronary Intervention Versus Optimal Medical Therapy in Stable Coronary Artery Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials

Seema Pursnani, Frederick Korley, Ravindra Gopaul, Pushkar Kanade, Newry Chandra, Richard E. Shaw and Sripal Bangalore

_Circ Cardiovasc Interv._ 2012;5:476-490; originally published online August 7, 2012; doi: 10.1161/CIRCINTERVENTIONS.112.970954

_Circulation: Cardiovascular Interventions_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2012 American Heart Association, Inc. All rights reserved.

Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circinterventions.ahajournals.org/content/5/4/476

Data Supplement (unedited) at:

http://circinterventions.ahajournals.org/content/suppl/2012/08/07/CIRCINTERVENTIONS.112.970954.DC1
http://circinterventions.ahajournals.org/content/suppl/2013/10/17/CIRCINTERVENTIONS.112.970954.DC2
http://circinterventions.ahajournals.org/content/suppl/2016/04/13/CIRCINTERVENTIONS.112.970954.DC3

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Interventions_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Interventions_ is online at:
http://circinterventions.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

FIGURE I. OVERALL RISK OF BIAS

Was intention to treat used to handle withdrawals? [Green: Low risk of bias, Yellow: Unclear risk of bias, Red: High risk of bias]
Was the study free of industry funding? [Green: Low risk of bias, Yellow: Unclear risk of bias, Red: High risk of bias]
Was randomization method clearly delineated? [Green: Low risk of bias, Yellow: Unclear risk of bias, Red: High risk of bias]
Was allocation concealed? [Green: Low risk of bias, Yellow: Unclear risk of bias, Red: High risk of bias]
Were outcome assessors masked to group assignments? [Green: Low risk of bias, Yellow: Unclear risk of bias, Red: High risk of bias]
Were outcome assessors masked to all outcomes? [Green: Low risk of bias, Yellow: Unclear risk of bias, Red: High risk of bias]
Was the publication free of selective outcome reporting? [Green: Low risk of bias, Yellow: Unclear risk of bias, Red: High risk of bias]

FIGURE II. FUNNEL PLOT – ALL CAUSE MORTALITY

Subgroups:
- □ ≤1 year
- ◇ 1 to 5 years
- ○ ≥5 years
**Expanded Methods: Search strategy**

MEDLINE via Pubmed


EMBASE

'coronary stenosis':ab,ti OR 'coronary stenoses':ab,ti OR 'coronary artery atherosclerosis'/de OR 'stable angina pectoris'/de OR 'heart muscle ischemia'/de OR 'myocardial ischemia' OR 'coronary disease':ab,ti OR 'non-acute coronary disease':ab,ti OR 'non acute coronary disease':ab,ti OR 'cad':ab,ti OR 'chd':ab,ti AND ("transluminal coronary angioplasty'/exp OR 'heart catheterization'/exp OR 'drug eluting stent'/de OR 'bare metal stent'/de OR 'coronary stent'/de OR 'percutaneous coronary intervention'/exp OR 'percutaneous transluminal coronary angioplasty':ab,ti OR 'cardiac catheterization':ab,ti OR 'drug eluting stent':ab,ti OR 'drug eluting stents':ab,ti OR 'bare metal stent':ab,ti OR 'bare metal stents':ab,ti OR 'percutaneous coronary intervention':ab,ti OR 'pci':ab,ti OR 'ptca':ab,ti) AND ("antihypertensive agent'/de OR 'calcium channel blocking agent'/de OR 'aspirin':ab,ti OR 'nitric oxide donor':ab,ti OR 'antilipemic agent'/exp OR 'statins':ab,ti OR 'statin':ab,ti) NOT ('animal'/exp NOT ('animal'/exp AND 'human'/exp))

COCHRANE LIBRARY

Comparaison entre intervention coronaire percutanée et traitement médical optimal dans la maladie coronaire stable
Revue systématique et méta-analyse des essais cliniques randomisés
Seema Pursnani, MD, MPH; Frederick Korley, MD; Ravindra Gopaul, MBA, MPH; Pushkar Kanade, MBBS, MPH; Newry Chandra, MBBS, MPH; Richard E. Shaw, PhD, MA; Sripal Bangalore, MD, MHA

Contexte—L’intérêt d’une intervention coronaire percutanée (ICP) dans la prise en charge des coronaropathies stables demeure controversé. Compte tenu des progrès accomplis dans les traitements médicaux et l’arrivée des stents au cours des dix dernières années, nous avons voulu savoir si le fait de pratiquer une ICP en complément du traitement médical contribuait ou non à améliorer le pronostic comparativement au traitement médical institué isolément.

Méthodes et résultats—En interrogeant les bases de données PubMed, EMBASE et CENTRAL, nous avons effectué une revue systématique et une méta-analyse des essais cliniques randomisés publiés jusqu’en janvier 2012 et qui avaient comparé la revascularisation par ICP au traitement médical optimal (TMO) chez des patients coronariens stables. Le critère de jugement principal a été la mortalité liée à une quelconque cause tandis que les critères de jugement secondaires comprenaient le décès de cause cardiovasculaire, l’infarctus du myocarde non fatal, la réalisation d’une nouvelle revascularisation et l’absence d’angor. Les analyses principales ont porté sur la plus longue durée de suivi disponible et les analyses secondaires ont été stratifiées en fonction de la durée des essais en distinguant suivis à court terme (n’ayant pas excédé 1 an), de durée intermédiaire (1 à 5 ans) et de longue durée (5 ans ou plus). Nous avons identifié 12 essais cliniques randomisés ayant porté sur un total de 7 182 patients qui satisfaisaient à nos critères de sélection. Les analyses principales ont montré que, comparativement au TMO, la réalisation d’une ICP n’avait pas significativement amélioré la mortalité globale (risque relatif [RR] : 0,85 ; intervalle de confiance [IC] à 95 % : 0,71–1,01) ni les taux de décès de cause cardiovasculaire (RR : 0,71 ; IC à 95 % : 0,47–1,06), d’infarctus du myocarde non fatals (RR : 0,93 ; IC à 95 % : 0,70–1,24) et de nouvelles revascularisations (RR : 0,93 ; IC à 95 % : 0,76–1,14), les résultats ayant été similaires quelle qu’ait été la durée de suivi. L’analyse de sensibilité réalisée en retenant uniquement les essais dans lesquels l’utilisation de stents avait dépassé 50 % a objectivé un amoindrissement de la taille de l’effet exercé par l’ICP sur la mortalité liée à toute cause (RR : 0,93 ; IC à 95 % : 0,78–1,11). En revanche, s’agissant de l’absence d’angor, la réalisation d’une ICP a significativement amélioré le pronostic comparativement au TMO (RR : 1,20 ; IC à 95 % : 1,06–1,37) et ce, à tous les temps d’évaluation.

Conclusions—Cette analyse exhaustive et extrêmement rigoureuse des essais menés chez des patients atteints de maladie coronaire stable a montré que, comparativement au TMO, la réalisation d’une ICP n’avait pas diminué les risques de mortalité, de décès de cause cardiovasculaire, d’infarctus du myocarde non fatal ou de nouvelle revascularisation. L’ICP ayant toutefois plus fortement amélioré les symptômes angineux que le TMO instauré seul, des études plus vastes et offrant davantage de puissance sont nécessaires pour confirmer cette observation. (Traduit de l’anglais : Percutaneous Coronary Intervention Versus Optimal Medical Therapy in Stable Coronary Artery Disease; A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Circ Cardiovasc Interv. 2012;5:476–490.)

Mots clés : angor ■ maladie coronaire ■ traitement médical optimal ■ intervention coronaire percutanée

Valeur diagnostique des mesures combinées de la pression intracoronaires et de la vitesse du flux sanguin en conditions basales
Evaluation de la sévérité des lésions fonctionnelles coronaires sans recours à l’adénosine
Tim P. van de Hoef, MD; Froukje Nolte, MSc; Peter Damman, MD; Ronak Delewi, MD; Matthijs Box, MD; Steven A.J. Chamuleau, MD, PhD; Michiel Voskuil, MD, PhD; Maria Siebes, PhD; Jan G.P. Tijssen, PhD; Jos A.E. Spaan, PhD; Jan J. Pick, MD, PhD; Martijn Meuwissen, MD, PhD

Contexte—L’appréciation de la sévérité des lésions fonctionnelles coronaires à partir des paramètres physiologiques intracoronaires tels que la réserve de vitesse du flux coronaire et la fraction de flux de réserve, d’utilisation plus courante, est hautement conditionnée par l’induction d’une hypotension maximale. Nous avons évalué la valeur diagnostique de l’indice de résistance sténotique en l’absence d’hypotension, c’est-à-dire dans les conditions basales, comparativement aux paramètres hémodynamiques intracoronaires ordinairement mesurés en phase hypotensive, car l’obtention d’une telle hypotension peut être malaisée en pratique clinique courante.
Perkutánní koronární intervence versus optimální farmakoterapie u stabilní ischemické choroby srdeční
Systematický přehled a meta-analýza randomizovaných klinických studií

Seema Pursnani, MD, MPH; Frederick Korley, MD; Ravindra Gopaul, MBA, MPH; Pushkar Kanade, MBBS, MPH; Newry Chandra, MBBS, MPH; Richard E. Shaw, PhD, MA; Sripal Bangalore, MD, MHA

Úvod — V léčbě stabilní ischemické choroby srdeční (ICHS) zůstává role perkutánní koronární intervence (PCI) i nadále diskutabilní. Vzhledem k pokroku v oblasti farmakoterapie a v technologii stentů za posledních 10 let, jsme se pokusili zjistit, zda PCI přidaná k farmakoterapii zlepšuje — ve srovnání se samotnou farmakoterapií — klinickou prognózu pacientů.

Metody a výsledky — Provedli jsme systematický přehled a meta-analýzu článků s výsledky randomizovaných klinických studií porovnávajících revaskularizaci formou PCI oproti optimální farmakoterapii u pacientů se stabilní ICHS; hodnocené články byly publikovány do ledna 2012 a vyhledány v databázích PubMed, EMBASE a CENTRAL. Primárním sledovaným cílem byla celková mortalita, mezi sekundární sledované cíle patřily úmrty z kardiovaskulárních příčin, nefatální infarkt myokardu, následná revaskularizace a nepřítomnost anginy pectoris. V primárních analýzách se použily údaje z nejdůležitějších období sledování, přičemž sekundární analýzy byly stratifikovány podle délky studie s dělením na krátkodobé (≤ 1 rok), střednědoby (1–5 let) a dlouhodobé (≥ 5 let). Naše kritéria pro zařazení splňovalo 12 randomizovaných klinických studií s celkovým počtem 7 182 účastníků. V primárních analýzách nevykazovala PCI oproti optimální farmakoterapii žádné významné zlepšení z hlediska mortality (poměr rizik [risk ratio, RR] 0,85; 95% CI 0,71–1,01), kardiovaskulárního úmrtí (RR 0,71; 95% CI 0,47–1,06), nefatálního infarktu myokardu (RR 0,93; 95% CI 0,70–1,24) ani opakované revaskularizace (RR 0,93; 95% CI 0,76–1,14), přičemž výsledky se podle délky sledování nijak nelišily. Analýza senzitivity zahrnující pouze studie s větším než 50% použitím stentů, prokázala snížení velikosti účinku u celkové mortality (RR 0,93; 95% CI 0,78–1,11) po PCI. Co se však týče nepřítomnosti anginy pectoris, bylo pozorováno významné zlepšení po PCI oproti optimální farmakoterapii (RR 1,20; 95% CI 1,06–1,37), a to bez ohledu na délku sledování.

Závěry — V této nejdůkladnější a nejkomplexnější analýze prognózy pacientů se stabilní ICHS nesnížila PCI — ve srovnání s optimální farmakoterapií (RR 1,20; 95% CI 1,06–1,37), a to až bez ohledu na délku sledování.

 Klíčová slova: angina pectoris ■ ischemická choroba srdeční ■ optimální farmakoterapie ■ perkutánní koronární intervence

Ischemická choroba srdeční (ICHS) je celosvětově hlavní příčinou úmrtí. Každoročně je zodpovědná za více než 7,2 milionů úmrtí.1 Je prokázáno, že časná revaskularizace při léčbě infarktu myokardu s elevací segmentu ST snižuje výskyt kardiovaskulárních příhod.2–10 Kromě toho bylo prokázáno, že revaskularizace zlepšuje kardiovaskulární prognózu při léčbě infarktu myokardu bez elevace segmentu ST a u ne-stabilní anginy pectoris.11–14 V léčbě neakutní ICHS, která se klinicky manifestuje jako stabilní angina pectoris, však zatím nebyla vypracována optimální strategie. Současné doporučené postupy pro léčbu stabilní anginy pectoris zdůrazňují ověřování rizikových faktorů, tedy zanechání kouření, zvýšení fyzické aktivity, léčbu diabetes mellitus, snížení koncentrace lipidů, antianginózní a antihypertenzní terapii.15
Vzhledem k pokroku ve farmakologické léčbě v posledních desetiletích není jasné, zda percutální koronární intervence (PCI) nabízí v léčbě pacientů se stabilní anginou pectoris vzhledem k hledisku progrese nějaké přednosti oproti optimální farmakoterapii.

Studie z poslední doby, včetně studií COURAGE (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation) a BARI 2D (Bypass Angioplasty Revascularization Investigation 2 Diabetes), neprokázaly významné rozdíly v progresii u pacientů se stabilní anginou pectoris lěčených samotnou optimální farmakoterapií nebo revaskularizací. Bylo publikováno několik přehledů a meta-análýz ve snaze vymezení souvislosti PCI u nemocných se stabilní ICHS. Některé konstatovaly výraznější zmírnění příznaků anginy pectoris (poměr šancí [odds ratio, OR] 1,69; 95% CI 1,24–2,30), zatímco jiné neprokázaly při použití invazivního přístupu žádné zlepšení v mortalitě, výskytu infarktu myokardu (IM) nebo nutnosti následné revaskularizace. Pouze jedna analýza z roku 2008, jejíž výsledky publikovali Schömig a kol., a do níž byly začleněny údaje z velkých studií SWISS-II (Swiss Interventional Study on Silent Ischemia) a COURAGE, naznačila zlepšení v hledisku celkové mortality ve skupině s revaskularizací (OR 0,80; 95% CI 0,64–0,99). Do uvedené analýzy byly zařazeny studie, v nichž skupina s revaskularizací zahrnovala pacienty po PCI nebo koronárním bypassu (coronary artery bypass grafting, CAGB) i nemocné bez stabilní ICHS (zn. pacienty s nedávně prodělaným akutním koronárním syndromem).

Cílem tohoto přehledu bylo zjistit, zda revaskularizační formu PCI snižuje v porovnání s optimální farmakoterapií výskyt kardiovaskulárních příznaků u pacientů se stabilní ICHS.

**CO VÍME**

- Názory na optimální léčbu stabiličké choroby srdeční nejsou jednotné. Navzdory neustálému vývoji percutální koronární intervence a nových způsobů farmakoterapie nebyla dosud stanovena neurčitá vhodná léčebná strategie zařazené na důkazech.

**CO NOVÉHO STUDIE PRINÁSÍ**

- V této meta-anályze údajů 7 182 osob není zjištěno percutální koronární intervence. V rámci meta-analyzy se skoncentrovala na výsledky o optimální farmakoterapii. Lékařské procento lepších rezultátů s PCI bylo oproti farmakoterapii.

**metody**

**Kritéria vhodnosti pacientů k zařazení**


**Výběr a hodnocení kvality**


**Výběr a hodnocení kvality**

**Výběr a hodnocení kvality**

Výběr a hodnocení kvality

**Metody**

**Kritéria vhodnosti pacientů k zařazení**


**Podrobnosti o rešerších strategiích lze nalézt v dodatku Data Supplement, který je dostupný pouze online. Po vyhledávání v databázi PubMed jsme k vyhledávání randomizovaných klinických studií použili tzv. Cochrane Highly Sensitive Search Strategy.**

**Výběr a hodnocení kvality**


**Výběr a hodnocení kvality**

**Výběr a hodnocení kvality**

Výběr a hodnocení kvality

**Metody**

**Kritéria vhodnosti pacientů k zařazení**


**Výběr a hodnocení kvality**

jú, příčemž údaje znovu ukládal i druhý hodnotitel. Mezi abstrahované údaje patřily charakteristiky studie, pacientů, podrobné údaje o skupině s intervencí a kontrolní skupině a sledované parametry. Pro skupiny PCI a optimální farmakoterapii byly shromážděny hrubé údaje o primárních (celková mortalita) a každém ze sekundárních (umrtí z kardiovaskulárních příčin, nefatální IM, opakovaná revaskularizace a nepřítomnost anginy pectoris) sledovaných cílů. V případě dostupnosti byly abstrahovány i údaje o sledovaných parametrech z různých časových úseků. U studií zahrnujících analýzu přežívání, byly hodnoty výskytu nežádoucích případů do 1 roku – navíc ke konečným údajům ze sledování – extra polovány z Kaplan-Meierových křivek přežívání použitím Kaplan-Meierova systému incidence.

**Statistická analýza**

Meta-analýza záměru léčit (intention-to-treat) byla provedena s použitím software RevManware vyvinutým neziskovou organizací Cochrane Collaboration. Heterogenitu jsme hodnotili pomocí χ² testu pro heterogenitu a I² statistiky ke stanovení podílu variace, kterou lze připisat na konto heterogenity mezi studiemi (nepřekrývající se hodnoty CI nebo hodnota I² > 50 % naznačující statisticky významnou heterogenitu). Souhrnný odhad účinku byl vypočetl pro všechny zařazené studie na základě nejdelší době sledování a pomocí Mantelovy-Haenszlovy metody byly vytvořeny podskupiny podle délky sledování v rámci studie (≤ 1 rok, 1–5 let a ≥ 5 let; definováno jako krátkodobé, resp. střednědobé a dlouhodobé). Počet rizik pro každý sledovaný parametr byl vypočetl pomocí DerSimonianova a Lairdova modelu náhodných účinků. Vzhledem k heterogenitě uspořádání studií a variabilitě v definici optimální farmakoterapie a PCI se použití modelu náhodných účinků považovalo za vhodnéňže než použití modelu fixních účinků. Publikáční bias byl hodnocen pomocí trychtýřovitých grafů.

**Výběr studií**

Randomizovaných klinických studií splňujících naše kritéria pro zařazení jsme objevili 12 (obrázek 1). Zařazování pacientů probíhalo po celém světě; pouze ve 2 případech byli pacienti zařazováni do studií výhradně v USA. Do uvedených 12 studií bylo zařazeno celkem 7 182 pacientů s průměrnou dobou sledování 4,9 let (rozmezí 1,5–10,2 roků).

**Vstupní charakteristiky**

Vstupní charakteristiky zařazených studií jsou shrnuty v tabulce 1 a podrobné klinické charakteristiky účastníků v tabulce 2.

---

**Analýzy senzitivity**

Ke stanovení potenciálního vlivu na naše souhrnné parametry účinku při hodnocení studií s financováním ze strany farmaceutického průmyslu a výrobců zdravotnické techniky byla provedena analýza senzitivity. Vzhledem k rozvoji PCI v posledních 20 letech jsme provedli i analýzu senzitivity s cílem zhodnotit potenciální rozdílný vliv implantace stentu (holého kovového stentu nebo DES) v našem porovnání PCI s farmakoterapií odděleným hodnocením studií, v nichž byl stent implantován více než 50 % účastníkům oproti použití samotné balónkové angioplastiky. Plánováme jsme sice i provedení analýzy senzitivity po vyřazení studií málo kvalitních z metodologického hlediska (na základě našeho posouzení biasu), ale všechny zařazené studie na tom byly z hlediska rizika biasu podobně, většinou z důvodu neznámých informací ohledně způsobu zařizování pacientů do skupin a maskování parametrů pro hodnocení výsledku. Protože jsme nenašli ani 1 studii se statisticky významným biasem, rozhodli jsme se tuto analýzu senzitivity vůbec neprovádět.

---

**Výsledky**

**Obrázek 1. Výběr studií. Zobrazen průběh výběru studií k zařazení do naší meta-analýzy. PCI, perkutání koronární intervence; IM, infarkt myokardu; CABG (coronary artery bypass grafting), koronární bypass.**
<table>
<thead>
<tr>
<th>Studie, délka zařazení, země nebo region</th>
<th>Kritéria pro zařazení</th>
<th>Popis interвенce</th>
<th>Popis farmakoterapie</th>
<th>Primární sledovaný parametr</th>
<th>Sekundární sledované parametry</th>
<th>Délka sledování (roků)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACME-1 1987–1990, USA</td>
<td>70%–99% stenóza v proximálních dvou řetězích 1 hlavní koronární tepny, zátěžový test s ≥ 1 mm depresí segmentu ST ale spoň v 1 svodu nebo pinici deficit na thaliovém scanu, nebo IM v posledních 3 měsících</td>
<td>Neuvěděno</td>
<td>PTCA</td>
<td>325 mg kyselina acetylsalicylová, nitrát, beta-blokátory, blokátory kalciového kanálu</td>
<td>Zátěžové vyšetření po 6 měsících: doba na nástupu 1 mm deprese segmentu ST, maximální deprese segmentu ST, součin maximální prace</td>
<td>3</td>
</tr>
<tr>
<td>ACME-2 1987–1990, USA</td>
<td>Angina pectoris v anamnéze, IM v posledních 3 měsících, nebo ≥ 3 mm horizontální depresí segmentu ST při zátěžovém vyšetření; ≥ 70% stenóza v proximálních dvou řetězích 1 nebo 2 koronárních tepen řetězích 1 nebo 2 koronárních tepen (údaje pro ICHS s postižením 1 tepny uvedena dříve ve studii ACME-1)</td>
<td>Nestabilní angina pectoris neodpovídající na farmakoterapii, předchozí PCI, primární diagnóza srdečního onemocnění mimo ICHS, ≥ 50% stenóza kmene levé koronární tepny, ICHS s postižením 3 tepen, EFLK ≤ 30 %</td>
<td>PTCA</td>
<td>Kyselina acetylsalicylová plus individuální terapie těžby, betablokátory a blokátory kalciového kanálu</td>
<td>Primární/sekundární sledované parametry jednotlivě nerezem povznícení anginy pectoris, zátěžové a angiografické vyšetření po 6 měsících; změna v délce trvání zátěže při zátěžovém vyšetření, doba do vzniku anginy pectoris, maximální součin srdce frakce-tlaku, procentuální průměr stenózy v daných líchách</td>
<td>Medíán 5</td>
</tr>
<tr>
<td>ALKK 1994–1997, Německo</td>
<td>Po STEMI 8–42 dny s provedenou PTCA nebo rekanalizaci dané tepny, angina pectoris stupně I nebo II CCS, Angina pectoris stupně III nebo IV CCS, &gt; 70% stenóza v jiné koronární tepně, štěp po CABG jako infarktová tepná, nutnost CABG (stenóza kmene levé koronární tepny, aneurysma levé komory, významná chlopní vadý, nekardiální onemocnění zkracující předpokládanou dobu dožití)</td>
<td>PTCA, BMS</td>
<td>100 mg kyseliny acetylsalicylové, beta-blokátory a další léky dle úvahy lékaře</td>
<td>Souhrn přežívání bez reinfarktu, PCI nebo CABG pro ischemii, nebo rezospitalizace pro těžkou anginu pectoris do 1 roku</td>
<td>Recidiva IM nebo revaskularizace při dlouhodobém sledování (≈ 5 let)</td>
<td>Průměr 4,7</td>
</tr>
<tr>
<td>AVERT 1995–1996, Severní Amerika Evropa</td>
<td>≥ 50% stenóza alespoň 1 koronární tepny vedoucí k doporučení PCI, asymptomatická angina pectoris nebo angina pectoris stupně I nebo II CCS, dokončení alespoň 4min zátěžového vyšetření bez ischémie, LDL ≤ 115 mg/dl, a triglyceridy &lt; 500 mg/dl</td>
<td>PTCA, BMS, aterektomie</td>
<td>80 mg atorvastatin</td>
<td>Souhrn ischemické příhody zahrnující srdční smrt, resuscitaci po zástavě srdce, nefatální IM, cedvá mozková příhoda, PCI, CABG a zhoršující se angina pectoris vyžadující hospitalizaci</td>
<td>Jednotlivé složky primárního sledovaného parametru</td>
<td>1,5</td>
</tr>
<tr>
<td>BARI 2D 2001–2005, Severní a Jižní Amerika Evropa</td>
<td>≥ 50% stenóza hlavní koronární tepny s pozitivním zátěžovým vyšetřením nebo ≥ 70% stenóza hlavní koronární tepny s klasickou anginou pectoris a diabetes mellitus 2. typu</td>
<td>PTCA, BMS, DES</td>
<td>Kyselina acetylsalicylová, statiny, beta-blokátory a inhibitory ACE nebo AT1-blokátory, inzulin a perorální antidiabetická léčba</td>
<td>Celková mortalita</td>
<td>Souhrn celkové mortality, IM nebo cedvých mozkových příhod</td>
<td>5</td>
</tr>
<tr>
<td>Studie, délka zařazení, země nebo region</td>
<td>Kritéria pro zařazení</td>
<td>Popis intervence</td>
<td>Popis farmakoterapie</td>
<td>Primární sledovaný parametr</td>
<td>Sekundární sledované parametry</td>
<td>Délka sledování (roky)</td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>COURAGE 1999–2004, Severní Amerika</td>
<td>≥ 70% stenóza alespoň 1 proximální tepny, indukovatelná ischemie při zátěžovém vyšetření nebo deprese segmentu ST nebo inverze vlny T při klidovém EKG</td>
<td>Angina pectoris stupně IV CCS, významná deprese segmentu ST nebo hypotenze při zátěžovém vyšetření 1. stupně podle Bruceova protokolu, srdeční selhání nebo kardiogenní šok neodpovídající na léčbu, EFLK &lt; 30%, revaskularizace v posledních 6 měsících, koronární anatomie nevhodná pro PCI</td>
<td>PTCA, BMS, DES</td>
<td>Souhrn celkové mortality a nefatálního IM</td>
<td>Souhrn celkové mortality, IM, cévních mozkových příchodu a hospitalizace pro nestabilní anginu pectoris, angina pectoris funkčního stupně (CCS); kvalita života; využívání zdrojů; poměr nákladů/účinnost</td>
<td>Medzíná 4,6</td>
</tr>
<tr>
<td>DEFER 1997–1998, Evropa, Asie</td>
<td>Angiografické vyšetření při &gt;50% stenóze v nativní koronární tepně a FFR ≥ 0,75, bez reverzibilní ischemie prokázané neinvazivním vyšetřením v předchozích 2 měsících</td>
<td>Úplný uzávěr cévní tepny, infarkt s vlnou Q, nestabilní angina pectoris, nebo malé cévní tepny</td>
<td>PTCA, BMS</td>
<td>Statiny, beta-blokád, nitráty</td>
<td>Souhrn celkové mortality, IM, CABG, PCI, a jakékoli komplikace v souvislosti s výkonem, které vyžadují větší intervenci nebo delší hospitalizaci</td>
<td>2</td>
</tr>
<tr>
<td>JSAP 2002–2004, Japonsko</td>
<td>≥ 75% (nebo ≥60% při kvantitativním koronarografickém vyšetření) ICHS s postižením 1 nebo 2 tepen, indukovatelná ischemie při zátěžovém vyšetření nebo deprese segmentu ST nebo inverze vlny T na kladovém EKG</td>
<td>ICHS s postižením 3 tepen, postižení kmene levé koronární tepny nebo ústí RIA, úplný uzávěr, AKS, EFLK &lt; 50%, tendence ke krvi, diseminovaná intravaskulární koagulace, těžký zápal plic, kreatinin &gt; 1,5 mg/dl, stenóza štěpu, ICHS s nízkým rizikem a již předepsanou PCI nebo farmakoterapií</td>
<td>PTCA, BMS</td>
<td>Pně znávající na lékaři (většina užívá kyselinu acetylsalicylovou nebo jinou antiagregační léčbu, beta-blokád, nitráty, statiny, ACEI/A, TB-blockád)</td>
<td>Souhrn celkové mortality, IM, CABG, PCI, a jakékoli komplikace v souvislosti s výkonem, které vyžadují větší intervenci nebo delší hospitalizaci</td>
<td>3,3</td>
</tr>
<tr>
<td>MASS-1 1988–1991, Brazílie</td>
<td>≥ 80% stenóza RIA před odstupem první diagonální větve, ICHS s postižením 1 tepny</td>
<td>Úplný uzávěr, délka léze &gt;12 mm, postižení ostí, těžká kalcifikace, významné vini, postižení kmene levé koronární tepny, proděláný IM, významná chlopová vada, kardiomyopatie, dysfunkce LK, předchozí PCI nebo CABG</td>
<td>PTCA</td>
<td>Kyselina acetylsalicylová, nitráty, beta-blokád</td>
<td>Souhrn srdeční smrti, IM nebo anginu pectoris neodpovídající na léčbu a vyžadující revaskularizaci, chirurgická revaskularizace ve skupině s PCI</td>
<td>5</td>
</tr>
</tbody>
</table>

(Pokračování)
**Tabulka 1. (Pokračování)**

<table>
<thead>
<tr>
<th>Studie, délka zařazení, změna nebo region</th>
<th>Kritéria pro zařazení</th>
<th>Kritéria pro vyřazení</th>
<th>Primární sledovaný parametr</th>
<th>Sekundární sledované parametry</th>
<th>Délka sledování (roky)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MASS-2 1995–2000, Brazílie</strong></td>
<td>≥ 70% proximální stenóza několika tepen a ischemie dokumentovaná zátěžovým vyšetřením nebo CC5 stupně II nebo III</td>
<td>Nestabilní angina, akutní IM vyžadující emergentní revaskularizaci, komorové aneurysma vyžadující chirurgickou reparaci, EF &lt; 40%, předchozí PCI nebo CABG, ICHS s postižením 1 tepny, vrozená srdeční vada, kardiomyopatie, stenóza kmene levé koronární tepny ≥ 50%, neschopnost řídit se protokolem nebo dodržovat podmínky sledování, předpokládané nebo potvrzené těhotenství</td>
<td>Soumén srdeční smrtí, IM nebo anginy pectoris, nezlepšující se až po 3-4 dnech</td>
<td>Revaskularizace forma PCI nebo CABG, se zvýšeným smrtelností</td>
<td>5</td>
</tr>
<tr>
<td><strong>RITA-2 1992–1996, Velká Británie a Irsko</strong></td>
<td>Angiografické vyšetření s ≥50% (2 projekce) nebo ≥70% (1 projekce) stenózu alespoň 1 hlavní tepny, kterou lze odstranit pomocí PTCA, nedávno diagnostikovaná angina pectoris (alespoň 7 dní před randomizací)</td>
<td>Revaskularizace nutná pro zmírnění symptomů nebo přínos z hlediska pronostiky, předchozí revaskularizace, význěné postižení kmene levé koronární tepny, AKS v předchozích 7 dnech, hemodynamicky významná chlopně, nebo život ohrožující onemocnění nekardiolégy etiologie</td>
<td>Soumén celkové mortality a nefatálního IM</td>
<td>Revaskularizace formou PCI nebo CABG, se zvýšeným smrtelností</td>
<td>7</td>
</tr>
<tr>
<td><strong>SWISS-2 1991–1997, Švýcarsko</strong></td>
<td>Prvni STEMI nebo non-STEMI v posledních 3 měsících, bez nádorového onemocnění, ICHS s postižením 1–2 tepen dokumentovaná angiograficky a němá ischemie při zátěžovém vyšetření s maximální zátěž spolu s použitím zobrazení metod</td>
<td>ICHS s postižením 3 tepen, z technických důvodů nelze koronární lèze odstranit pomocí PCI</td>
<td>Soumén srdeční smrtí, recidivy nefatálního IM (včetně němého IM) a revaskularizace pro symptomy formou PCI nebo CABG</td>
<td>Jednotlivé složky primárního sledovaného parametru a smrtí ze základních příčin, úmrtí od veškerých příčin, angina pectoris ve projevu přívětu k revaskularizaci</td>
<td>Průměr (SD) 10,2 (2,6)</td>
</tr>
</tbody>
</table>
**Tabulka 2. Vstupní charakteristiky pacientů**

<table>
<thead>
<tr>
<th>Počet randomizovaných</th>
<th>ACME-1</th>
<th>ACME-2</th>
<th>ALKK</th>
<th>AVERT</th>
<th>BARI-2D</th>
<th>COURAGE</th>
<th>DEFRI</th>
<th>JSAP</th>
<th>MASS-1</th>
<th>MASS-2</th>
<th>RITA-2</th>
<th>SWISS-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI</td>
<td>105</td>
<td>107</td>
<td>51</td>
<td>50</td>
<td>149</td>
<td>151</td>
<td>90</td>
<td>90</td>
<td>798</td>
<td>807</td>
<td>1149</td>
<td>1138</td>
</tr>
<tr>
<td>OMT</td>
<td>114</td>
<td>110</td>
<td>89</td>
<td>90</td>
<td>562</td>
<td>60</td>
<td>61</td>
<td>61</td>
<td>61(11)</td>
<td>61(11)</td>
<td>61(10,1)</td>
<td>61(1,8)</td>
</tr>
<tr>
<td>Počet randomizovaných</td>
<td>190</td>
<td>190</td>
<td>100</td>
<td>100</td>
<td>199</td>
<td>199</td>
<td>91</td>
<td>91</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Průměrný věk, roky (SD)</td>
<td>62 (5)</td>
<td>63 (5)</td>
<td>60</td>
<td>60</td>
<td>60,2 (8,2)</td>
<td>57,5 (8,8)</td>
<td>59 (8,6)</td>
<td>61 (11)</td>
<td>61,8 (8,7)</td>
<td>62,4 (8,0)</td>
<td>61,8 (10,1)</td>
<td>61,0 (8,7)</td>
</tr>
<tr>
<td>Mlk, %</td>
<td>100</td>
<td>100</td>
<td>94</td>
<td>94</td>
<td>89 (9)</td>
<td>89 (9)</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>67</td>
<td>85 (8)</td>
<td>85 (8)</td>
</tr>
<tr>
<td>Diabetes nefítní, %</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>15 (17)</td>
<td>15 (17)</td>
<td>9</td>
<td>9</td>
<td>100</td>
<td>100</td>
<td>32 (35)</td>
<td>32 (35)</td>
</tr>
<tr>
<td>Hypertonie, %</td>
<td>52</td>
<td>53</td>
<td>45</td>
<td>45</td>
<td>45 (34)</td>
<td>45 (34)</td>
<td>62</td>
<td>62</td>
<td>66</td>
<td>66</td>
<td>66 (67)</td>
<td>66 (67)</td>
</tr>
<tr>
<td>Prodlení IM, %</td>
<td>33</td>
<td>33</td>
<td>28</td>
<td>28</td>
<td>40 (21)</td>
<td>40 (21)</td>
<td>30</td>
<td>30</td>
<td>39</td>
<td>39</td>
<td>21 (14)</td>
<td>21 (14)</td>
</tr>
<tr>
<td>Průměrný EFLK, % (SD)</td>
<td>64,9 (1,1)</td>
<td>65,1 (1,3)</td>
<td>67</td>
<td>67</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>61</td>
<td>61 (7)</td>
<td>66 (7)</td>
<td>NR</td>
</tr>
<tr>
<td>Průměrný STK (SE), mm Hg</td>
<td>134 (13)</td>
<td>137 (13)</td>
<td>134</td>
<td>134</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Průměrný DTK (SE), mm Hg</td>
<td>79 (2)</td>
<td>82 (2)</td>
<td>89</td>
<td>89</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Průměrný LDL (SD), mg/dl</td>
<td>130 (2)</td>
<td>130 (2)</td>
<td>130</td>
<td>130</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>% s ICHS s postižením 1/2/3 tepen</td>
<td>100/0/0</td>
<td>0/100/0</td>
<td>NR</td>
</tr>
<tr>
<td>Stent ve skupině PCI při randomizaci, %</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>30</td>
<td>91</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>100</td>
<td>95</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>ASA</td>
<td>85</td>
<td>91</td>
<td>94</td>
<td>94</td>
<td>95 (8)</td>
<td>95 (8)</td>
<td>NR</td>
<td>NR</td>
<td>92</td>
<td>92</td>
<td>91 (7)</td>
<td>91 (7)</td>
</tr>
<tr>
<td>Statin</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>10 (9)</td>
<td>10 (9)</td>
<td>76</td>
<td>76</td>
<td>74</td>
<td>74</td>
<td>NR (8)</td>
<td>NR (8)</td>
</tr>
<tr>
<td>Jelík hypolipidemiku</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR (10)</td>
<td>NR (10)</td>
<td>NR (9)</td>
<td>NR (9)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Beta-blokátor</td>
<td>30</td>
<td>50</td>
<td>47</td>
<td>47</td>
<td>47 (6)</td>
<td>47 (6)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nitráty</td>
<td>24</td>
<td>50</td>
<td>47</td>
<td>47</td>
<td>NR (9)</td>
<td>NR (9)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>ACE/neb-AT inhibit.</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR (9)</td>
<td>NR (9)</td>
<td>NR (8)</td>
<td>NR (8)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

ACME, (studie) Angioplasty Compared to Medicine; ALKK, (studie) Arbeitsgemeinschaft versus Revascularization Treatment; AVERT, (studie) Atorvastatin versus Revascularization Treatment; BARI, (studie) Bypass Angioplasty Utilizing Revascularization Investigation; COURAGE, (studie) Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; JSAP, (studie) Japanese Stable Angina Pectoris; MASS, (studie) Medicine, Angioplasty, or Surgery Study; RITA, (studie) Randomized Intervention Trial of unstable Angina; SWISS, (studie) Swiss Interventional Study on Silent Ischemia; PCI, perkutánní koronární intervence; OMT, optimální farmakoterapie; EFLK, ejekční frakce levé komory; NR (not reported), neuvedeno; STK, systolický krevní tlak; IM, infarkt myska; LDL, low-density lipoprotein; lipoprotein o nízké hustotě; AT, -blokátor, blokátor receptoru 1 pro angiotenzin II; DTK, diastolický krevní tlak.

*průměrný počet tepen.
†jakákoli hypolipidemická léčba (statin nebo jiná léková skupina).
Zařazení byli převážně muži, osoby středního věku a osoby s typickými rizikovými faktory ICHS, tedy s hypertenzí, hyperlipidemií a diabetes mellitus. V každé studi byly vstupní charakteristiky skupin s PCI a farmakoterapii podobné.

Závažnost ICHS jako základního onemocnění se ve studiích lišila. Do studií ALKK (Randomized Comparison of Percutaneous Transluminal Coronary Angioplasty and Medical Therapy in Stable Survivors of Acute Myocardial Infarction with Single Vessel Disease: A Study of the Arbeitsgemeinschaft Leitenden Kardiologische Krankenhausarzte)27 a SWISS-II byli zařazeni výhradně nemocní s infarktem myokardu s elevací segmentu ST do 42 dní, resp. 3 měsíců, ve stabilizování jeho období po akutním IM. Z obou studií však bylo vyloučeno osoby, u nichž došlo k srdečním příhodám do 1 týdne od randomizace, což umožnilo zařazení těchto studií do našeho systematického přehledu. Většině studií byla předpokladovaná evidenční frakce levé komory, která byla větší v podobě hodnocených studiích vyši než 50%.

Pro zařazení studie byla předpokladem indukovatelná nebo reverzibilní ischemie při zátěžovém vyšetření, s výjimkou studie DEFER,28,29 z níž byly osoby s reverzibilní ischemií při neinvaživním vyšetření vyloučeny, nejspíše k preferované praxi provádět PCI. Počet postižených tepen se při neinvazivním vyšetření vyloučeny, nejspíše k preferované pouze ve studiích BARI 2D, COURAGE, MASS-2 a SWISS-II se mohlo postižení týkat i dvou nebo tří tepen. Většině studií byla zařazena výhradně pacienti s ICHS postihující jednu tepnu, ve zbývajících případech se mohlo postižení týkat i dvou nebo tří tepen.

Ve většině zařazených studiích byla provedena angioplastika bez implantace stentu. Pouze ve studiích BARI 2D, COURAGE, MASS-234,35 a JSAP (Japanese Stable Angina Pectoris)36 byla během PCI provedena angioplastika s implantací stentu v u více než 50% účastníků; z pacientů s implantací stentu byly pouze u malého procenta použity stenty DES, zatímco ve většině případů je jednalo o holé kovové stenty. Ve studii BARI 2D, nejrecentnější ze studií zařazené do tohoto přehledu, byly stenty DES implantovány většině nemocních pacientů ve skupině s PCI.

Lišila se i farmakoterapie, i když v uvedených případech užívali téměř všechny pacienti alespoň jednou denně acetylsalicylovou v nízké dávce a většina z nich měla antinocné látky. Starší studie MASS-1 a ACME jsou studiemi mimo přehleda – lišily (tabulka 2). Užívání statinů se v novějších studiích při zařazení pacientů do skupiny s PCI a optimální farmakoterapii trend směrem k přínosu PCI byla nejvyznačnější při délce sledování ≥ 5 let (RR 0,82; 95% CI 0,65–1,02). Obě studie s nejdelším sledováním (SWISS-2 a ALKK) prokázaly nejznačnější významné výhody pro PCI opatření opti

Celemé nebylo mezi skupinami s PCI a s optimální farmakoterapii byl zjištěn statisticky významný rozdíl ve výskytu nefatálního IM (RR 0,93; 95% CI 0,70–1,24) bez ohledu na délku sledování (obrázek 4). Při sledování v délce ≤ 1 rok, 1 až 5 let a ≥ 5 let (RR 0,70; 95% CI 0,46–1,08). U studií s délkou sledování ≤ 5 let byl pozorován u tohoto parametru statisticky významný rozdíl mezi oběma skupinami (RR 1,53; 95% CI 0,69–3,38)

Úmrtí z kardiovaskulárních příčin

Mezi skupinami s PCI a s optimální farmakoterapii nebyl zjištěn statisticky významný rozdíl v úmrtí z kardiovaskulárních příčin (obrázek 3). Bodový odhodlouk se nejdelší době sledování svědčil ve prospěch skupiny s PCI (poměr rizik [risk ratio, RR] 0,85; 95% CI 0,71–1,01) (obrázek 3). Sledované parametry účinku u obdo

Úmrtí z kardiovaskulárních příčin

Mezi skupinami s PCI a s optimální farmakoterapii byl zjištěn statisticky významný rozdíl ve výskytu nefatálního IM (RR 0,93; 95% CI 0,70–1,24) bez ohledu na délku sledování (obrázek 4). Při sledování v délce ≤ 1 rok, 1 až 5 let a ≥ 5 let dosáhly hodnoty RR 0,82 (95% CI 0,37–1,80), resp. 1,11 (95% CI 0,47–2,59) a 0,92 (95% CI 0,67–1,27).

Revaskulárizace

V celkové analýze byl prokázan rozdíl v provádění následné revaskulárizace pro přítomnost symptomů (RR 0,93; 95% CI 0,76–1,14) bez ohledu na délku sledování (obrázek 5). Při sledování v délce ≤ 1 rok, 1–5 let a ≥ 5 let: RR 1,49; 95% CI 0,71–3,16; resp. RR 1,11; 95% CI 0,74–1,30 a RR 0,99; 95% CI 0,75–1,30 (obrázek 5). Pro všechny délky sledování byla v této analýze prokázána významná statisticky významná heterogenita mezi studiemi. Starší studie MASS-1 a ACME jsou studiemí mimo...
rozpětí předem definovaných hodnot s vyšším podílem nutnosti časné opakované PCI nebo CABG ve skupině s PCI, nejspíše kvůli menšímu zkušenostem a většímu výskytu komplikací v daném období.

Obrázek 2. Perkutální koronární intervence (PCI) versus optimální farmakoterapie (OMT) z hlediska rizika celkové mortality. Speciální graf typu „forest“ zobrazuje jednotlivé studie a mezi součty poměrů rizik a 95% intervalů spolehlivosti při porovnání hodnot celkové mortality po PCI vs OMT. První část grafu ukazuje výsledky celkové analýzy při použití dostupných údajů pro nejdelší období sledování a následující části grafu jsou stratifikovány podle délky sledování v dané studii. Názvy studií: ACME, Angioplasty Compared to Medicine; ALKK, Arbeitsgemeinschaft Leitenden Kardiologische Krankenhausarzte; AVERT, Atorvastatin versus Revascularization Treatment; BARI, Bypass Angioplasty Revascularization Investigation; COURAGE, Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; JSAP, Japanese Stable Angina Pectoris; MASS, Medicine, Angioplasty, or Surgery Study; RITA, Randomized Intervention Trial of unstable Angina; SWISS, Swiss Interventional Study on Silent Ischemia.

Nepřítomnost anginy pectoris
Celkové se příznaky anginy pectoris vyskytovaly méně často ve skupině s PCI než ve skupině s optimální farmakoterapií (RR 1,20; 95% CI 1,06–1,37) (obrázek 6). Tento přínos PCI
Pursnani a kol. PCI v léčbě stabilní ischemické choroby srdeční 65

<table>
<thead>
<tr>
<th>Studie nebo podskupina, délka (roky), rok publikování</th>
<th>PCI</th>
<th>Počet případů</th>
<th>Celkem</th>
<th>Počet případů</th>
<th>Celkem</th>
<th>Poměr rizik M-H, random., 95% CI</th>
<th>Poměr rizik M-H, random., 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI v léčbě stabilní ischemické choroby srdeční 65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| byl zjevný bez ohledu na délku sledování (≤ 1 rok, 1–5 let a ≥ 5 let s hodnotami RR 1,32; 95% CI 1,13–1,54, resp. RR 1,57; 95% CI 1,06–2,32 a RR 1,17; 95% CI 1,00–1,38). Analýza senzitivity Byl zjevný bez ohledu na délku sledování (≤ 1 rok, 1–5 let a ≥ 5 let s hodnotami RR 1,32; 95% CI 1,13–1,54, resp. RR 1,57; 95% CI 1,06–2,32 a RR 1,17; 95% CI 1,00–1,38). Analýza senzitivity

Test rozdílů mezi podskupinami: \( \chi^2 = 2,86; df = 1; p = 0,09; I^2 = 65,1\% \)

Obrázek 3. Perkutální koronární intervence (PCI) versus optimální farmakoterapie (OMT) z hlediska rizika srdeční smrti. Speciální graf typu „forest“ zobrazuje jednotlivé studie a mezisoučty poměrů rizik a 95% intervalů spolehlivosti při porovnání hodnot srdeční smrti po PCI vs OMT. První část grafu ukazuje výsledky celkové analýzy při použití dostupných údajů pro nejdelší období sledování a následující část grafu jsou stratifikovány podle délky sledování v dané studii. Názvy studií: ALKK, Arbeitsgemeinschaft Leitender Kardiologische Krankenhausarzte; AVERT, Atorvastatin versus Revascularization Treatment; BARI, Bypass Angioplasty Revascularization Investigation; COURAGE, Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; JSAP, Japanese Stable Angina Pectoris; MASS, Medicine, Angioplasty, or Surgery Study; RITA, Randomized Intervention Trial of unstable Angina; SWISS, Swiss Interventional Study on Silent Ischemia.

Analýza senzitivity

Na zadání ze strany farmaceutického průmyslu bylo jednoznačně provedena pouze studie AVERT; v případě studie DEFER nebyl zadavatel uveden. Ani po vyřazení těchto studií nebyl zjištěn žádný rozdíl v celkové mortalitě (RR 0,82; 95% CI 0,67–1,01).

Pouze ve studiích BARI-2D, COURAGE, JSAP a MASS-2 byly v rámci s PCI stenty implantovány více než 50% pacientů. Analýza údajů pouze z těchto studií statisticky významný rozdíl v celkové mortalitě neprokázala (RR 0,93; 95% CI 0,78–1,11). Významný rozdíl neprokázala ani analýza podle délky sledování (hodnoty při krátkodobém, střednědobém a dlouhodobém sledování: RR 1,48; 95% CI, 0,86–2,55, resp. RR 0,87; 95% CI 0,30–2,54 a RR 0,93; 95% CI 0,78–1,12). Riziko zkreslení

Ve všech případech se jednalo o publikované randomizované klinické studie. Metoda randomizace byla dostatečně popsána (generování počítačem nebo systém automatické volby telefonních čísel) přibližně u poloviny studií a zaslepení zařazení pacienta do jedné z hodnocených skupin bylo výslovně uvedeno pouze v jednom případě. Maskování parametrů pro hodnocení výsledku bylo popsáno u novějších studií [RITA-2 (Randomized Intervention Trial of unstable Angina), BARI-2D, JSAP, SWISS-2]. Ztráta pacientů ze sledování byla uvedena u všech studií a s výjimkou studií ACME, u nichž chybí údaje o výskytu anginy pectoris při posledním vyšetření, se jednalo o < 10% z celkového počtu.
účastníků. Ve všech studiích byla provedena analýza záměru léčit (intention-to-treat). Většina studií neuváděla sledované parametry selektivně; kromě toho byly ve většině zařazených studiích sledované parametry předem definovány v oddílu Metody. Riziko biasu napříč studiemi je shrnuto v Data Supplement dostupném pouze online (online-only Data Supplement) (obrázek I). Publikační bias byl hodnocen pomocí trychtýřovitého grafu, aby se postihl primární sledovaný cíl celkové mortality (online-only Data Supplement, obrázek II), kdy symetrie grafu neprokazovala jednoznačný vztah s ne-publikováním výsledků studie v souvislosti s její velikostí a odhadem účinku.

### Obrázek 4.

Perkutánní koronární intervence (PCI) versus optimální farmakoterapií (OMT) z hlediska rizika nefatálního infarktu myokardu (IM). Speciální graf typu „forest“ zobrazuje jednotlivé studie a mezisoučty poměrů rizik a 95% intervalů spolehlivosti při porovnání hodnot srdeční smrti po PCI vs OMT. První část grafu ukazuje výsledky celkové analýzy při použití dostupných údajů pro nejdelší období sledování a následující části grafu jsou stratifikovány podle délky sledování v dané studii. Názvy studií: ACME, Angioplasty Compared to Medicine; ALKK, Arbeitsgemeinschaft Leitended Kardiologische Krankenhausarzte; AVERT, Atorvastatin versus Revascularization Treatment; BARI, Bypass Angioplasty Revascularization Investigation; COURAGE, Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; JSAP, Japanese Stable Angina Pectoris; MASS, Medicine, Angioplasty, or Surgery Study; RITA, Randomized Intervention Trial of unstable Angina; SWISS, Swiss Interventional Study on Silent Ischemia.

#### Tabulka 1

<table>
<thead>
<tr>
<th>Studie nebo pod-skupina, délka (roky), rok publikování</th>
<th>PCI (Počet případů Celkem)</th>
<th>Optimální farmakoterapie (Počet případů Celkem)</th>
<th>Váha</th>
<th>Poměr rizik M-H, random., 95% CI</th>
<th>Poměr rizik M-H, random., 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celková analýza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACME-1 (3) 1992</td>
<td>7</td>
<td>105</td>
<td>6</td>
<td>107</td>
<td>4,5 %</td>
</tr>
<tr>
<td>ACME-2 (5) 1997</td>
<td>6</td>
<td>51</td>
<td>6</td>
<td>50</td>
<td>4,5 %</td>
</tr>
<tr>
<td>ALKK (5) 2003</td>
<td>10</td>
<td>149</td>
<td>12</td>
<td>151</td>
<td>7,8 %</td>
</tr>
<tr>
<td>AVERT (1,5) 1999</td>
<td>4</td>
<td>177</td>
<td>2</td>
<td>164</td>
<td>2,5 %</td>
</tr>
<tr>
<td>BARI 2d (5) 2009</td>
<td>90</td>
<td>798</td>
<td>82</td>
<td>807</td>
<td>1,1 %</td>
</tr>
<tr>
<td>COURAGE (5) 2007</td>
<td>143</td>
<td>1 149</td>
<td>128</td>
<td>1 138</td>
<td>18,3 %</td>
</tr>
<tr>
<td>DEFER (2) 2001</td>
<td>6</td>
<td>90</td>
<td>0</td>
<td>91</td>
<td>1,0 %</td>
</tr>
<tr>
<td>JSAP (3,3) 2008</td>
<td>3</td>
<td>188</td>
<td>7</td>
<td>191</td>
<td>3,8 %</td>
</tr>
<tr>
<td>MASS-2 (5) 1995</td>
<td>4</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td>1,0 %</td>
</tr>
<tr>
<td>MASS-2 (5) 2004</td>
<td>23</td>
<td>205</td>
<td>31</td>
<td>203</td>
<td>12,6 %</td>
</tr>
<tr>
<td>RITA-2 (7) 1997</td>
<td>32</td>
<td>504</td>
<td>23</td>
<td>514</td>
<td>12,2 %</td>
</tr>
<tr>
<td>SWISS-2 (10,2) 2007</td>
<td>11</td>
<td>96</td>
<td>40</td>
<td>105</td>
<td>10,7 %</td>
</tr>
<tr>
<td><strong>Celková analýza (95% CI)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>3 584</td>
<td>3 593</td>
<td>100,0 %</td>
<td>0,93 (0,70–1,24)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Počet případů</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1 – 5 let</td>
<td></td>
</tr>
<tr>
<td>ACME-1 (3) 1992</td>
<td>7</td>
</tr>
<tr>
<td>ACME-2 (5) 1997</td>
<td>6</td>
</tr>
<tr>
<td>ALKK (5) 2003</td>
<td>10</td>
</tr>
<tr>
<td>AVERT (1,5) 1999</td>
<td>4</td>
</tr>
<tr>
<td>COURAGE (5) 2007</td>
<td>143</td>
</tr>
<tr>
<td>DEFER (2) 2001</td>
<td>6</td>
</tr>
<tr>
<td>JSAP (3,3) 2008</td>
<td>3</td>
</tr>
<tr>
<td>MASS-1 (1) 1995</td>
<td>0</td>
</tr>
<tr>
<td>MASS-2 (1) 2004</td>
<td>16</td>
</tr>
<tr>
<td><strong>Mezisoučet (95% CI)</strong></td>
<td>560</td>
</tr>
<tr>
<td>Celkem</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Počet případů</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 5 let</td>
<td></td>
</tr>
<tr>
<td>ACME-2 (5) 1997</td>
<td>6</td>
</tr>
<tr>
<td>ALKK (5) 2003</td>
<td>10</td>
</tr>
<tr>
<td>BARI 2d (5) 2009</td>
<td>90</td>
</tr>
<tr>
<td>COURAGE (5) 2007</td>
<td>143</td>
</tr>
<tr>
<td>DEFER (5) 2001</td>
<td>6</td>
</tr>
<tr>
<td>MASS-1 (1) 1995</td>
<td>0</td>
</tr>
<tr>
<td>MASS-2 (5) 2004</td>
<td>23</td>
</tr>
<tr>
<td>RITA-2 (7) 1997</td>
<td>32</td>
</tr>
<tr>
<td>SWISS-2 (10,2) 2007</td>
<td>11</td>
</tr>
<tr>
<td><strong>Mezisoučet (95% CI)</strong></td>
<td>1 144</td>
</tr>
<tr>
<td>Celkem</td>
<td>17</td>
</tr>
</tbody>
</table>

Test rozdílů mezi podskupinami: χ² = 0,27; df = 2 (p = 0,68); I² = 0 %
V této dosud nejaktuálnější analýze jsme neprokázali žádný statisticky významný rozdíl ve sledovaných parametrech celkové mortality, úmrtí z kardiovaskulárních příčin, výskytu nefatálního IM ani nutnosti následné revaskularizace pro přítomnost symptomů mezi skupinami s PCI a se samotnou optimální farmakoterapií. U celkové mortality a kardiovaskulárního úmrtí nicméně bodový odhad upřednostňoval PCI;
tato skutečnost byla nejnápadnější ve studiích s delší dobou sledování. Stala se méně výraznou po omezení analýzy na studie s použitím stentů. V celkové analýze, a to bez ohledu na délku sledování, bylo provedení PCI spojeno s vyšším procentem absence anginy pectoris.

Oproti meta-anályze, kterou publikovali Schömig a kol., jsme přidali několik velkých studií publikovaných v mezidobí (JSAP a BARI 2D). Navíc jsme použili i přísnější kritéria pro populaci osob se stabilní ICHS, kdy jsme vyloučili studie zahrnující účastníky s IM < 1 týden před zařazením.42,43 Vysouvali jsme i studie porovnávající revaskularizaci definovanou jako PCI nebo CABG s farmakoterapií, s cílem zhodnotit pouze výsledky nechirurgických způsobů revaskularizace.44–46 Vytvrzdili jsme studii navržené k porovnání s tréninkovým zátěžovým programem47 a studii s výsledky publikovanými v podobě abstraktu,48 u nichž nebylo možno přesně ověřit metodu provedení studie. Konečně jsme zhodnotili i klinicky smysluplné sledované parametry revaskularizace provedené

**Obrázek 6.** Perkutální koronární intervence (PCI) versus optimální farmakoterapie (OMT) z hlediska rizika nepřítomnosti anginy pectoris. Speciální graf typu „forest“ zobrazuje jednotlivé studie a mezisoučty poměrů rizik a 95% intervalů spolehlivosti při porovnání hodnot nepřítomnosti anginy pectoris po PCI vs OMT. První část grafu ukazuje výsledky celkové analýzy při použití dostupných údajů pro nejdelší období sledování a následující části grafu jsou stratifikovány podle délky sledování v dané studii. Názvy studií: ACME, Angioplasty Compared to Medicine; ALKK, Arbeitsgemeinschaft Leitended Kardiologische Krankenhausarzte; AVERT, Atorvastatin versus Revascularization Treatment; BARI, Bypass Angioplasty Revascularization Investigation; COURAGE, Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; JSAP, Japanese Stable Angina Pectoris; MASS, Medicine, Angioplasty, or Surgery Study; RITA, Randomized Intervention Trial of unstable Angina; SWISS, Swiss Interventional Study on Silent Ischemia.

<table>
<thead>
<tr>
<th>Studie nebo podskupina, délka (roky), počet publikovaných</th>
<th>PCI</th>
<th>OMT</th>
<th>Poměr rizik M-H, 95% CI</th>
<th>Poměr rizik M-H, random., 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Příhod</td>
<td>Celkem</td>
<td>Váha</td>
<td>Celkem</td>
</tr>
<tr>
<td>Celková analýza</td>
<td>1 220</td>
<td>1 302</td>
<td>1 126</td>
<td>1 20</td>
</tr>
<tr>
<td>Heterogenita: Tau² = 0,11; χ² = 33,00; df = 8 (p &lt; 0,0001); I² = 76%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test celkového účinku: Z = 2,79 (p = 0,005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 1 rok</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACME-1 (3) 1992</td>
<td>50</td>
<td>85</td>
<td>43</td>
<td>90</td>
</tr>
<tr>
<td>ACME-2 (0,5) 1997</td>
<td>27</td>
<td>51</td>
<td>18</td>
<td>50</td>
</tr>
<tr>
<td>ALKK (5) 2003</td>
<td>115</td>
<td>149</td>
<td>92</td>
<td>151</td>
</tr>
<tr>
<td>AVERT (1,5) 1989</td>
<td>96</td>
<td>177</td>
<td>67</td>
<td>164</td>
</tr>
<tr>
<td>BARI 2D (5) 2009</td>
<td>486</td>
<td>798</td>
<td>476</td>
<td>807</td>
</tr>
<tr>
<td>COURAGE (5) 2007</td>
<td>316</td>
<td>1 149</td>
<td>296</td>
<td>1 138</td>
</tr>
<tr>
<td>DEFER (5) 2001</td>
<td>51</td>
<td>90</td>
<td>61</td>
<td>91</td>
</tr>
<tr>
<td>MASS-1 (5) 1995</td>
<td>44</td>
<td>69</td>
<td>17</td>
<td>72</td>
</tr>
<tr>
<td>MASS-2 (5) 2004</td>
<td>119</td>
<td>205</td>
<td>92</td>
<td>203</td>
</tr>
<tr>
<td>Mezisoučet (95% CI)</td>
<td>2 773</td>
<td>2 766</td>
<td>100,0%</td>
<td>1,20 (1,06–1,37)</td>
</tr>
<tr>
<td>Test celkového účinku: Z = 2,79 (p = 0,005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–5 let</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACME-1 (3) 1992</td>
<td>61</td>
<td>96</td>
<td>47</td>
<td>102</td>
</tr>
<tr>
<td>ACME-2 (0,5) 1997</td>
<td>27</td>
<td>51</td>
<td>18</td>
<td>50</td>
</tr>
<tr>
<td>ALKK (1) 2003</td>
<td>134</td>
<td>149</td>
<td>124</td>
<td>151</td>
</tr>
<tr>
<td>BARI 2D (1) 2009</td>
<td>319</td>
<td>798</td>
<td>194</td>
<td>807</td>
</tr>
<tr>
<td>COURAGE (1) 2007</td>
<td>680</td>
<td>1 149</td>
<td>595</td>
<td>1 138</td>
</tr>
<tr>
<td>MASS-2 (1) 2004</td>
<td>107</td>
<td>205</td>
<td>74</td>
<td>203</td>
</tr>
<tr>
<td>Mezisoučet (95% CI)</td>
<td>2 448</td>
<td>2 451</td>
<td>100,0%</td>
<td>1,32 (1,13–1,54)</td>
</tr>
<tr>
<td>Test celkového účinku: Z = 2,79 (p = 0,005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 5 let</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALKK (5) 2003</td>
<td>115</td>
<td>149</td>
<td>92</td>
<td>151</td>
</tr>
<tr>
<td>BARI (1) 1999</td>
<td>95</td>
<td>177</td>
<td>67</td>
<td>164</td>
</tr>
<tr>
<td>MASS-1 (3) 1995</td>
<td>58</td>
<td>72</td>
<td>23</td>
<td>72</td>
</tr>
<tr>
<td>Mezisoučet (95% CI)</td>
<td>334</td>
<td>326</td>
<td>100,0%</td>
<td>1,57 (1,06–2,32)</td>
</tr>
<tr>
<td>Test celkového účinku: Z = 2,79 (p = 0,005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test rozdílů mezi podskupinami: χ² = 2,27; df = 2 (p = 0,32); I² = 11,8%
PCI v léčbě stabilní ischemické choroby srdeční 69

Limitace studie
Jsme si vědomi několika limitací naší analýzy. Analýza revaskularizace na základě symptomů a nepřítomnosti anginy pectoris je subjektivní a předpokládá lze i možnost zkreslení v uvádění těchto dvou sledovaných parametrů ze strany investigátorů a autorů studií, resp. samotných účastníků. Stejně jako v případě jiných analýz jsme nemohli nastavit naši analýzu dávek podávaných léků podle podílu pacientů s implantací stentu a lze je nejlze zhodnotit formou meta-analyzy na úrovni jednotlivých pacientů. K doplnění naší analýzy senzitivitní studií uvádějících více než 50% použití stentů ve skupinách s PCI bychom rádi provedli ji analýzu ve skupinách s optimální revaskularizací podle současných doporučených postupů. Vzhledem k neustálemu zdokonalování farmakoterapie a méněch se cilových hodnot krevního tlaku a cholesterolu v době jednotlivých studií, nebylo možno takovou analýzu pro výraznou heterogenitou provést.

Závěry
Lze tedy shnout, že u pacientů se stabilní ICHS neexistuje žádný jednoznačný důkaz dalšího přínosu PCI při snižování rizika mortalitě, kardiovaskulárního úmrtí, nefatanálního IM ani žádný jednoznačný důkaz dalšího přínosu PCI při snižování celkové mortality i incidence srdeční smrti, rozsah tohoto přínosu se však snížil po analýze novějších studií (s razantnější farmakoterapií) s vysokým procentem implantace stentů. Přesto PCI znamená ve srovnání s farmakoterapií přínos v podobě zmírnění symptomů anginy pectoris u nemocných se nedostatečnou revaskularizací.

Lepší poznaní patofyziologie aterosklerózy vedlo k pokroku v oblasti PCI s příchodem stentů DES a ke zdokonalení farmakoterapie. Starší studie léčebné strategie byly navíc kritizovány pro zařazování nemocných podle kateterizace srdece (s následným biasem), zařazování osob s nižším rizikem (bez významné ischemie) a pro použití stentů DES (pouze první generace) u malého procenta účastníků studií. Probíhající studie, jako např. ISCHEMIA (International Study of Comparative Health Effectiveness with Medical and Invasive Approaches), ověří novější léčebné strategie zavedené od doby tekutiny a zahrnující i malého procenta pacientů s PCI v léčbě stabilní ischemické choroby srdeční.

Další zveřejněné informace
Nejsou uvedeny.

Literatura