Background—Conflicting data exist regarding the relation between body mass index (BMI) and cardiovascular events and mortality after percutaneous coronary intervention.

Methods and Results—We performed pooled analyses to evaluate the association between BMI (weight in kilograms divided by the square of the height in meters) and the risks of major cardiovascular events (defined as death from cardiovascular causes, nonfatal myocardial infarction, stent thrombosis, or stroke) and death among 23 181 patients from 11 prospective percutaneous coronary intervention studies. Overall, mean (±SD) BMI was 24.9±3.0. During follow-up (median, 2.1 years), 2381 patients had a major cardiovascular event, and 1004 patients died. After adjusting covariates, there was an inverse relationship between BMI and adverse outcomes. With a BMI of 22.5 to 24.9 as the reference category, the risk of major cardiovascular events was elevated among patients with a lower BMI (by a factor of 1.52 for a BMI <18.5; 1.05 for a BMI of 18.5–19.9; 1.03 for a BMI of 20.0–22.4); by contrast, the risk declined among patients with a higher BMI (by a factor of 0.97 for a BMI of 25.0–27.4; 0.97 for a BMI of 27.5–29.9; and 0.78 for a BMI of ≥30.0). In general, the hazard ratios for deaths were similar.

Conclusions—Among patients undergoing percutaneous coronary intervention, a low BMI was associated with increased risks of major cardiovascular events and death. However, there were no excess risks of these events associated with a high BMI. *(Circ Cardiovasc Interv. 2013;6:146-153.)*

Key Words: body mass index ◼ outcomes ◼ percutaneous coronary intervention
WHAT IS KNOWN

• A high body mass index is associated with a higher risk of cardiovascular disease and mortality.

• Once coronary artery disease has been established, the obesity paradox has been reported with overweight or obese patients having a better prognosis compared with normal or lower body mass index groups.

• The relationship between body mass index and adverse cardiovascular events after percutaneous coronary intervention is unknown.

WHAT THE STUDY ADDS

• This study supports the inverse relationship of body mass index with major cardiovascular events and all-cause mortality after percutaneous coronary intervention.

• The mechanism for the obesity paradox is not clear and further studies are needed.

patient demographics, cardiac or coexisting risk factors, clinical manifestations, left ventricular function, angiographic and procedural characteristics, and in-hospital and follow-up outcomes. Relevant data were prospectively collected using a dedicated, electronic case report form by specialized personnel at each center, and the Internet-based system provides each center with immediate and continuous feedback on processes and quality-of-care measures. All databases are maintained at the Clinical Research Center of Asan Medical Center, Seoul, Korea, and therefore a convenience sample of 11 clinical studies was available in existing merged data sets. As each study enrollment criteria, patients with cardiogenic shock, terminal illness, or malignancy at baseline were excluded. All of these studies were approved by the local institutional review board, and all patients provided written informed consent.

Among studies, PCI was performed according to current standard guidelines. Antiplatelet therapy and periprocedural anticoagulation were administered according to standard regimens. All patients were prescribed aspirin (loading dose, 200 mg) plus clopidogrel (loading dose, 300 or 600 mg) before or during PCI. After the procedure, aspirin (100–200 mg per day) was continued indefinitely, patients treated with drug-eluting stents were prescribed clopidogrel (75 mg/d) for at least 12 months, and patients treated with bare-metal stents were prescribed clopidogrel for at least 1 month.

Outcomes, Definitions, and Follow-Up

Two outcomes were assessed for inclusion in the current analysis: major cardiovascular events and death from any cause. Major cardiovascular event was defined as a composite of death from cardiovascular event was defined as a composite of death from cardiovascular disease and cardiac or cerebrovascular death. The diagnosis of MI was based on the universal definition of MI, as defined by the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.

Stroke, as detected by the occurrence of a new neurological deficit, was confirmed by a neurologist and on imaging. For each study, an independent clinical events committee adjudicated all clinical end points of the study, and all outcomes of interest were confirmed by source documentation collected at each hospital.

Among studies, clinical follow-up was performed via office visit or telephone contact at 1, 6, and 12 months and then every 6 or 12 months, thereafter, according to the study protocol. All other possible

information derived from outpatient visits, hospital readmission, or by the referring physician, patients, or relatives were entered into the dedicated database. For validation of complete follow-up data, information on vital status was obtained from the National Population Registry of the Korea National Statistical Office with the use of a unique personal identification number.

Statistical Analysis

Continuous variables are described as mean and SD, and dichotomous variables are described as counts and percentages. Baseline clinical, angiographic, and procedural characteristics were described for each group according to BMI categories.

The association between BMI, and the risks of major cardiovascular events and death was analyzed using Cox proportional-hazards regression models, with a categorical representation of BMI as predictor variable. Based on cutoff points in previous studies, analyses of BMI used the following predefined categories: <18.5, 18.5 to 19.9, 20.0 to 22.4, 22.5 to 24.9, 25.0 to 27.4, 27.5 to 29.9, and ≥30.0. Using the BMI range of 22.5 to 24.9 as the referent category, we estimated hazard ratios and 95% confidence interval for the other BMI ranges. To account for between-study heterogeneity, P value and confidence interval were calculated using robust standard errors based on sandwich estimators.

We planned to accomplish this first by unadjusted analysis and then using a multivariable model to adjust potentially confounding factors, which were clinically relevant or were significantly associated with outcomes (P<0.05) (P study, age, sex, diabetes mellitus, hypertension, hyperlipidemia, smoking status, previous MI, previous stroke, peripheral vascular disease, renal dysfunction, acute coronary syndrome, ejection fraction, multivessel disease, left main disease, bifurcation disease, long disease, stent type, and number of stents). The assumptions of the proportional hazards were statistically assessed on the basis of Schoenfeld residuals and graphically using log–log plots. No significant deviations from the assumptions were noted. Cumulative probability and survival curves according to BMI categories were constructed from Kaplan–Meier estimates and compared using log-rank test. Additionally, to minimize the influence of possible reverse causation of low BMI and to assess the baseline BMI as a risk factor for nonprocedure cardiovascular events, sensitivity analyses were conducted excluding adverse events that occurred at <7 days after the procedure. All reported P values are 2-sided, and P values of <0.05 were considered to indicate statistical significance. SAS software, version 9.1 (SAS Institute, Cary, NC) was used for all statistical analysis.

Results

Study Population and Baseline Characteristics

A total of 23,604 subjects were pooled from 11 PCI clinical studies. Major clinical and demographic features of the combined population and that of each study are provided in Table 1. All the population had a mean age of 62 years, 70% of patients were men, 30% had diabetes mellitus, and 58% presented with acute coronary syndromes. For the devices of PCI, 82% patients received implantation of drug-eluting stents. Follow-up among studies varied from 1 to 5 years.

After exclusion of 423 (1.8%) subjects without baseline BMI data in merged population, 23,181 were included in the final analysis evaluating the association between BMI and outcomes.

Overall, the mean (±SD) BMI for the study population was 24.9±3.0. Detailed data on baseline, angiographic, and procedural characteristics according to the BMI categories are shown in Table 2. With increasing BMI, patients were younger, but the prevalence of diabetes mellitus, hypertension, and hyperlipidemia, and history of MI and PCI increased. Previous congestive heart failure, renal dysfunction, and left main disease were slightly more common in the lower BMI categories.
Table 1. Major Baseline Characteristics of Each Study

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall</th>
<th>ZEST<sup>17</sup></th>
<th>ZEST-AMI<sup>18</sup></th>
<th>LONG-DES II<sup>19</sup></th>
<th>LONG-DES III<sup>20</sup></th>
<th>ESSENCEDiabetes<sup>21</sup></th>
<th>DECLARE-LONG<sup>22</sup></th>
<th>REAL-LATE<sup>23</sup></th>
<th>ASAN-PCI<sup>24</sup></th>
<th>ASAN-VERIFY<sup>25</sup></th>
<th>IRIS-DES<sup>26</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of subjects</td>
<td>23604</td>
<td>2645</td>
<td>328</td>
<td>500</td>
<td>450</td>
<td>500</td>
<td>300</td>
<td>499</td>
<td>1625</td>
<td>7221</td>
<td>3370</td>
</tr>
<tr>
<td>Age, y</td>
<td>62 (10)</td>
<td>62 (10)</td>
<td>60 (11)</td>
<td>61 (9)</td>
<td>63 (10)</td>
<td>63 (10)</td>
<td>63 (8)</td>
<td>62 (9)</td>
<td>63 (10)</td>
<td>60 (10)</td>
<td>62 (10)</td>
</tr>
<tr>
<td>BMI, kg/m<sup>2</sup></td>
<td>25 (3)</td>
<td>25 (3)</td>
<td>24 (3)</td>
<td>25 (3)</td>
</tr>
<tr>
<td>Men</td>
<td>16424 (70)</td>
<td>1759 (67)</td>
<td>270 (82)</td>
<td>321 (64)</td>
<td>314 (70)</td>
<td>365 (73)</td>
<td>177 (59)</td>
<td>353 (71)</td>
<td>1156 (71)</td>
<td>5132 (71)</td>
<td>2446 (73)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>6995 (30)</td>
<td>760 (29)</td>
<td>85 (26)</td>
<td>166 (33)</td>
<td>133 (30)</td>
<td>144 (29)</td>
<td>300 (100)</td>
<td>176 (35)</td>
<td>426 (26)</td>
<td>1700 (24)</td>
<td>956 (28)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>13101 (56)</td>
<td>1609 (61)</td>
<td>153 (47)</td>
<td>275 (55)</td>
<td>265 (59)</td>
<td>285 (57)</td>
<td>212 (71)</td>
<td>307 (62)</td>
<td>917 (56)</td>
<td>3273 (45)</td>
<td>1958 (58)</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>9752 (41)</td>
<td>1363 (52)</td>
<td>148 (45)</td>
<td>146 (29)</td>
<td>255 (57)</td>
<td>277 (55)</td>
<td>115 (38)</td>
<td>218 (44)</td>
<td>609 (38)</td>
<td>2228 (31)</td>
<td>1996 (59)</td>
</tr>
<tr>
<td>Previous MI</td>
<td>2249 (10)</td>
<td>110 (4)</td>
<td>5 (2)</td>
<td>12 (2)</td>
<td>17 (4)</td>
<td>8 (2)</td>
<td>5 (2)</td>
<td>18 (4)</td>
<td>63 (4)</td>
<td>1426 (20)</td>
<td>201 (6)</td>
</tr>
<tr>
<td>ACS</td>
<td>13656 (58)</td>
<td>1463 (55)</td>
<td>328 (100)</td>
<td>273 (55)</td>
<td>190 (42)</td>
<td>180 (36)</td>
<td>125 (42)</td>
<td>263 (53)</td>
<td>1102 (68)</td>
<td>4579 (64)</td>
<td>1616 (48)</td>
</tr>
<tr>
<td>Follow-up (median, month)</td>
<td>25</td>
<td>25</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>39</td>
<td>59</td>
<td>25</td>
</tr>
</tbody>
</table>

Data are shown as mean (SD) for continuous variables and absolute number (percentage) for dichotomous variables, unless otherwise stated. ACS indicates acute coronary syndrome; ASAN-PCI, Asan Medical Center-Percutaneous Coronary Intervention Registry; ASAN-VERIFY, Asan Medical Center-VerifyNow Registry; BMI, body mass index; DECLARE-LONG, Drug-Eluting Stenting Followed by Clopidogrel Treatment Reduces Late Restenosis in Patients With Long Coronary Lesions; ESSENCE-DM, Randomized Comparison of Everolimus-Eluting Stent Versus Sirolimus-Eluting Stent Implantation for De Novo Coronary Artery Disease in Patients With Diabetes Mellitus; IRIS-DES, Interventional Cardiology Research In-cooperation Society-Drug-Eluting Stents Registry; LONG-DES, Percutaneous Treatment of Long Native Coronary Lesions With Drug-Eluting Stent; MI, myocardial infarction; REAL-LATE, Correlation of Clopidogrel Therapy Discontinuation in Real-World Patients Treated With Drug-Eluting Stent Implantation and Late Coronary Arterial Thrombotic Events; ZEST, Comparison of the Efficacy and Safety of Zotarolimus-Eluting Stent With Sirolimus-Eluting and Paclitaxel-Eluting Stent for Coronary Lesions; and ZEST-AMI, Comparison of the efficacy and safety of zotarolimus-, sirolimus-, and paclitaxel-eluting stents in patients with ST-elevation myocardial infarction.
Association Between BMI and the Risks of Major Cardiovascular Events and Mortality

The median follow-up was 2.1 years (25th and 75th percentiles; 1.2 and 3.9 years). During follow-up, a total of 2381 major cardiovascular events (392 cardiovascular deaths, 1954 MI, 181 stent thrombosis, and 167 strokes) were reported and 1004 total deaths occurred. Cumulative incidence curves of major cardiovascular events and all-cause mortality are presented in Figure 1. Overall, the rates of major cardiovascular events and mortality have significantly increased with decreasing BMI categories. The cumulative incidence of major cardiovascular events over time showed an initial steep rise, followed by a continuous separation of the curves, with a significantly higher rate of events in a low-BMI group. The incidence of mortality did continuously diverge over time, with a higher rate in a low-BMI group and a lower rate in a high-BMI group.

In unadjusted Cox regression analysis, as compared with the reference range of 22.5 to 24.9, the hazard ratios for the risk of major cardiovascular event increased with progressively lower levels of BMI, whereas the hazard ratios decreased with progressively higher levels of BMI (Table 3). A similar association was also seen between BMI and the risk of all-cause mortality.

To determine the independent association between BMI and clinical outcomes, we performed a multivariable Cox regression analysis after adjusting for a wide range of confounding factors.
Table 3. Crude Association Between Body Mass Index and Risk of Major Cardiovascular Events and All-Cause Mortality*

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Body Mass Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><18.5</td>
</tr>
<tr>
<td>No. of patients</td>
<td>339</td>
</tr>
<tr>
<td>Major cardiovascular events</td>
<td></td>
</tr>
<tr>
<td>Total number of events</td>
<td>60</td>
</tr>
<tr>
<td>Cumulative rate at 2 y†</td>
<td>17.1</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>1.82 (1.38–2.39)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td></td>
</tr>
<tr>
<td>Total number of events</td>
<td>43</td>
</tr>
<tr>
<td>Cumulative rate at 2 y†</td>
<td>11.1</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>3.70 (3.30–4.14)</td>
</tr>
</tbody>
</table>

*The hazard ratios represent the effect per category of body mass index relative to the reference category (22.5–24.9).
†Cumulative event rates are derived from Kaplan–Meier estimates.

Factors. Even after multivariable adjustment, the inverse relationship of BMI with major cardiovascular events and with all-cause mortality were maintained (Table 4 and Figure 2). As compared with the reference of 22.5 to 24.9, the risks of major cardiovascular events were higher among patients with a lower BMI (by a factor of 1.52 for a BMI <18.5; 1.05 for a BMI of 18.5–19.9; 1.03 for a BMI of 20.0–22.4), but the risks of these events were lower among patients with a higher BMI (by a factor of 0.97 for a BMI of 25.0–27.4; 0.97 for a BMI of 27.5–29.9; and 0.78 for a BMI of ≥30.0). The adjusted hazard ratios for major cardiovascular events were similar.

In sensitivity analyses excluding events at <7 days, overall findings suggesting the inverse relationship of BMI with major cardiovascular events and all-cause mortality were consistent (Table 5).

Discussion

This is the largest study to evaluate systematically the relationship of BMI with major cardiovascular events and total mortality after PCI using individual patient-level data from several prospective PCI clinical studies. As a result, the study shows that after adjusting for potential confounding factors, a low BMI is significantly associated with increased risks of major cardiovascular events and all-cause mortality. The excess risks for these outcomes associated with a high BMI, however, were not observed.

Obesity involves hyperinsulinemia and insulin resistance, enhances fatty acid turnover, increases sympathetic tone activity, induces platelet and clotting system activation, and causes chronic low-grade inflammation, all of which increase the risks for developing CAD and adverse cardiovascular events. And also, a greater BMI was significantly associated with poorer response of clopidogrel and aspirin, which are mandatory adjunct drugs for PCI. Contrary to these pathophysiology mechanisms induced by obesity, several studies suggested that overweight or obese patients have better PCI outcomes than do normal or leaner patients, supporting protective effect of obesity, known as the obesity paradox. These studies were, however, hampered by limited...
number of patients, a relatively short follow-up period, or a retrospective observational study design. A recent large-sized meta-analysis, including >250,000 patients with documented CAD, showed that a low-BMI group had the highest all-cause and cardiovascular mortality, whereas better survival was observed in higher BMI groups. Especially, these trends were mostly prominent in patients who received PCI than in those who underwent coronary artery bypass grafting or had a history of MI. Consistent with these findings, our patient-level pooled analysis of PCI patients also showed that there was an inverse relationship between BMI and mortality after PCI. Apart from the association between BMI and total mortality, an inverse relationship of BMI with major cardiovascular events, which are more specific measure of PCI outcomes, was also demonstrated.

Our study does not fully clarify the exact mechanism of an absence of association or an inverse association of BMI and clinical outcomes after PCI. However, there could be some possible explanations for this phenomenon. First, the discriminatory ability of BMI is relatively limited to make a clear distinction between body fat, which have negative impact on prognosis, and lean body mass, which is associated with better prognosis in patients with cardiovascular disease. Therefore, a high BMI does not solely imply excess body adiposity, and may reflect a preserved or increased lean body mass. It would be a plausible explanation of the better outcomes in overweight or obese patients. Second, higher BMI groups were associated with a higher prevalence of coexisting cardiovascular conditions, such as diabetes mellitus, hypertension, hyperlipidemia, and history of MI and PCI. Therefore, there is the possibility that patients with a high BMI were on more aggressive secondary preventive drug therapies rather than those with a normal or low BMI. Previous study demonstrated that overweight or obese patients were more likely to be adherent to guideline-recommended medical treatment. Third, although our analysis excluded patients with terminal illness or cancer to minimize the influence of possible reverse causation, other unmeasured factors that influence a low BMI, presumably, remain to be identified. Lastly, further studies are warranted to address the novel suggested mechanisms; a higher BMI is related to larger vessels treated with larger stent diameter or to the cardio-protective effect of adipokines.

The current analysis includes a large number of patients specifically treated with PCI in which contemporary devices and techniques were used. From the clinical standpoint, an important issue that deserves comment is that most devices used in PCI have been manufactured targeting patients with the average BMI. Although exact mechanism linking low BMI...

Table 4. Adjusted Hazard Ratios for Major Cardiovascular Events and All-Cause Mortality, According to Body Mass Index*

<table>
<thead>
<tr>
<th>Body Mass Index</th>
<th>Outcome</th>
<th><18.5</th>
<th>18.5–19.9</th>
<th>20.0–22.4</th>
<th>22.5–24.9</th>
<th>25.0–27.4</th>
<th>27.5–29.9</th>
<th>30.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major cardiovascular events</td>
<td>Hazard ratio (95% CI)</td>
<td>1.52 (1.16–1.99)</td>
<td>1.05 (0.83–1.33)</td>
<td>1.03 (0.92–1.17)</td>
<td>Reference</td>
<td>0.97 (0.87–1.07)</td>
<td>0.97 (0.85–1.11)</td>
<td>0.78 (0.62–0.98)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>Hazard ratio (95% CI)</td>
<td>2.93 (2.63–3.27)</td>
<td>2.44 (1.95–3.05)</td>
<td>1.39 (1.24–1.56)</td>
<td>Reference</td>
<td>0.79 (0.72–0.87)</td>
<td>0.76 (0.67–0.85)</td>
<td>0.79 (0.61–1.04)</td>
</tr>
</tbody>
</table>

*Major cardiovascular events were defined as a composite of cardiovascular death, nonfatal myocardial infarction, stent thrombosis, or stroke. CI indicates confidence interval.

*The hazard ratios represent the effect per category of body mass index relative to the reference category (22.5–24.9). This model were adjusted for study, age, sex, diabetes mellitus, hypertension, hyperlipidemia, smoking status, previous myocardial infarction, previous stroke, peripheral vascular disease, chronic lung disease, renal dysfunction, acute coronary syndrome, ejection fraction, multivessel disease, left main disease, bifurcation disease, long disease, stent type, and number of stents.

Figure 2. Adjusted hazard ratios for major cardiovascular event and death according to body mass index categories. Major cardiovascular event was defined as a composite of death from cardiovascular causes, nonfatal myocardial infarction, stent thrombosis, or stroke. The reference category was a body mass index of 22.5 to 24.9. A and B have different scales for hazard ratios. *Hazard ratios were adjusted for study, age, sex, diabetes mellitus, hypertension, hyperlipidemia, smoking status, previous myocardial infarction, previous stroke, peripheral vascular disease, chronic lung disease, renal dysfunction, acute coronary syndrome, ejection fraction, multivessel disease, left main disease, bifurcation disease, long disease, stent type, and number of stents.
with poorer PCI outcomes is still unclear, future studies are needed to determine whether patients with extreme small BMI may specifically need tailored PCI devices or not.

Potential limitations of the current study warrant discussion. First, the database merged several clinical studies and interstudy variability may exist that could have influenced results in the pooled patient population. Second, although we adjusted possible confounding factors, unmeasured confounders associated with BMI still exist. Third, we did not capture the measurements of body composition or body fat distribution (ie, waist circumference or waist-to-hip ratio regarding central obesity), which are suggested to be more closely related with adiposity-related outcomes. Fourth, as this analysis was performed in Asian population, it is uncertain whether this finding can be directly applied to other ethnic groups. Compared with Western population, the proportion of severe or extreme obese patients was too small in our population; 0.3% (59 patients) with class II obese (35 kg/m² ≤ BMI < 40 kg/m²) and 0.02% (4) patients with class III obese (BMI ≥ 40 kg/m²). In addition, it has been suggested that the relationship between BMI and mortality may differ across racial and ethnic groups. Fifth, we did not perform serial measurements of BMI during follow-up. There has been report suggesting a relation between weight change and cardiovascular events. Finally, longer term follow-up are needed to evaluate very long-term effect of BMI on outcomes after PCI.

Conclusions

In this large, pooled population of CAD patients receiving PCI in contemporary practice, patients with a low BMI had a higher risk of major cardiovascular events and death than patients with a normal BMI. However, no elevated risk of major cardiovascular events and mortality were seen in high-BMI groups. Before presumably drawing a conclusion that obesity is protective or harmless for cardiovascular risk among patients receiving PCI, more reliable surrogate markers differentiating excess body fat and muscle mass are needed for future risk stratification in such population, and additional clinical studies are needed to test different methods reflecting adiposity.

Sources of Funding

This study was supported, in part, by the Cardiovascular Research Foundation, Seoul, Korea, and by a grant from the Korea Health 21 R&D Project, Ministry of Health and Welfare, Korea (A090264).

Table 5. Crude and Adjusted Hazard Ratios for Clinical Outcomes Among Patients Who Did Not Experience Events or Survived 7 Days, According to Body Mass Index*

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Body Mass Index</th>
</tr>
</thead>
<tbody>
<tr>
<td><18.5</td>
<td>18.5–19.9</td>
</tr>
<tr>
<td>20.0–22.4</td>
<td>22.5–24.9</td>
</tr>
<tr>
<td>25.0–27.4</td>
<td>27.5–29.9</td>
</tr>
<tr>
<td>≥30.0</td>
<td></td>
</tr>
</tbody>
</table>

Major cardiovascular events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Hazard Ratio (95% CI)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major cardiovascular events</td>
<td>3.36 (1.93–5.86)</td>
<td>2.06 (1.19–3.56)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>2.32 (1.58–3.43)</td>
<td>1.63 (1.16–2.30)</td>
</tr>
</tbody>
</table>

*The hazard ratios represent the effect per category of BMI relative to the reference category (22.5–24.9).

†This model was adjusted for study, age, sex, diabetes mellitus, hypertension, hyperlipidemia, smoking status, previous myocardial infarction, previous stroke, peripheral vascular disease, chronic lung disease, renal dysfunction, acute coronary syndrome, ejection fraction, multivessel disease, left main disease, bifurcation disease, long disease, stent type, and number of stents.

Disclosures

References

Association of Body Mass Index With Major Cardiovascular Events and With Mortality After Percutaneous Coronary Intervention

Circ Cardiovasc Interv. 2013;6:146-153; originally published online March 26, 2013; doi: 10.1161/CIRCINTERVENTIONS.112.000062
Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/6/2/146

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Interventions can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Interventions is online at:
http://circinterventions.ahajournals.org//subscriptions/