Is it too early to call this the Readmission Decade? Readmissions are on everybody’s mind—identifying readmissions, preventing readmissions, considering the financial repercussions of having too many readmissions, lamenting the injustice of being held accountable for readmissions. Only time will tell whether this is a passing storm or here to stay, but for the moment the issue of readmissions is having its moment in the sun.

Prior research has shown that a substantial proportion of patients undergoing percutaneous coronary intervention (PCI) are readmitted to the hospital within 30 days of discharge, ranging from 8% to 16%. Early readmissions are often unplanned and potentially preventable events that are associated with increased 30-day and 1-year mortality. To date, however, the interventional community at large has not had the interventional community at large has not had to fully engage in efforts to prevent unplanned readmission. Although many of the heart failure and acute myocardial infarction patients included in the publicly reported hospital readmission measures undergo PCI, we have for the most part avoided being held accountable for readmissions after PCI. That privileged position may be in jeopardy, as recent events make it unlikely we will be able to remain above the fray much longer.

In December 2013, the Centers for Medicare and Medicaid Services began publicly reporting what is commonly referred to as the hospital-wide readmission measure. In contrast to previously reported, condition-specific measures, the hospital-wide readmission measure includes all patients discharged from an acute care hospital. Given the volume of PCI procedures, hospitals will increasingly focus efforts to reduce readmission on this patient population. Furthermore, the American College of Cardiology and Centers for Medicare and Medicaid Services have collaborated to implement voluntary public reporting of hospitals’ 30-day readmission rates after PCI. In March 2013, hospitals participating in the American College of Cardiology’s National Cardiovascular Data Registry received information on their risk-standardized unplanned readmission rates, the hospitals to which their patients were readmitted, and the principal discharge diagnosis.

Although this work identifies a potential opportunity to improve the care and outcomes of PCI patients, we do not yet have the knowledge that will inform efforts to avoid unplanned readmissions. Researchers have shown that focusing on traditional quality improvement metrics may not be an effective approach to preventing unplanned readmissions. Yeh et al observed that in-hospital complications and discharge medications were not significantly associated with risk of readmission. If that is the case, where should we be focusing our attention?

In this issue of Circulation: Cardiovascular Interventions, Wasfy et al present information that begins to address this gap in knowledge. The authors conducted a comprehensive medical record review at 2 Massachusetts hospitals within an integrated healthcare system and characterized both the reasons for 30-day readmission and the use of diagnostic testing and therapeutic procedures. They considered both planned and unplanned readmissions but were only able to conduct chart reviews of readmissions back to the institutions that performed the procedures. Consistent with prior studies, the authors demonstrated that the reasons for readmission were heterogeneous, and only a minority of readmissions was for procedural complications such as access site bleeding and stent thrombosis. What was striking, however, was the large proportion of patients who were readmitted for evaluation of recurrent chest pain or other anginal symptoms (38.1%). Despite the fact that these patients had recently undergone PCI, only a minority of these patients (6.2% of all readmissions) ultimately rules in for a myocardial infarction. Virtually all of these patients underwent some form of diagnostic testing, but relatively few studies identified evidence of ischemia that required revascularization.

Certainly, none of this will come as a surprise to interventional cardiologists. It is hard to imagine a more reliable method of guaranteeing a hospital stay than telling an emergency medicine physician that you are experiencing chest pain soon after a PCI. At our institution, these patients are banned from being triaged to less resource intensive patient care areas such as our chest pain unit and our observation unit. Nevertheless, the findings of Wasfy et al suggest that it may be time to reengineer our approach to these patients. As the authors note, every patient with stent thrombosis presented with a high-risk feature such as dynamic ECG changes elevated cardiac enzymes, or, in 1 case, cardiac arrest. The question is whether we can reliably sort through the remaining patients to identify a low-risk population that would not benefit from an inpatient stay. There is a lot of work to be done. We need to develop and validate algorithms to define a low-risk patient who could be safely treated at chest pain centers, in the observational setting, or even undergo expedited
stress testing in the office setting. If we are successful, how-
ever, these efforts could have a meaningful impact on hospi-
tals’ 30-day readmission rates, reduce hospital length of stay,
and lower overall healthcare costs by promoting a more delib-
erate approach to the use of diagnostic testing.

So maybe this represents a good place to start. Focusing on
patients with chest pain is appealing, in part, because it side-
steps issues of whether cardiologists should be responsible for
readmissions for seemingly noncardiac issues such as chole-
cyztis (2.0% of readmissions), bronchitis (0.8%), or depres-
sion (0.4%). No one would argue that cardiologists should not
play a central role in the evaluation of chest pain after PCI.
Furthermore, collaborating with emergency medicine physi-
cians on this issue builds on the relationships and past suc-
cesses of efforts to reduce door-to-balloon times,14–15 and these
efforts may, in turn, promote additional collaborative efforts to
reduce readmissions more broadly.

As so often in medicine, the study by Wasfy et al13 raises
more questions than it answers. Nevertheless, it represents an
important first step in efforts to generate the knowledge and
insights that hospitals will need to reduce readmissions after
PCI. The hope is that this study does not represent the end of
the discussion but rather the beginning of a dialog that may
well carry over into the next decade.

Sources of Funding
This research was supported by a grant from the National Institutes
of Health/National Heart, Lung, and Blood Institute (NHBLI; U01
HL105270-04; Center for Cardiovascular Outcomes Research at Yale
University) from the National Heart, Lung, and Blood Institute in
Bethesda, MD.

Disclosures
Dr Curtis receives salary support under contract with the National
Cardiovascular Data Registry to provide analytic services and with
the Centers for Medicare and Medicaid Services to support development
of quality measures in addition to equity interest in Medtronic. The
other author reports no conflicts.

References
1. Yost GW, Puher SL, Graham J, Scott TD, Skelding KA, Berger PB,
Blankenship JC. Readmission in the 30 days after percutaneous coronary
2. Khawaja FJ, Shah ND, Lennon RJ, Slussner JP, Alkatib AA, Ribal CS,
Gersh BJ, Montori VM, Holmes DR, Bell MR, Curtis JP, Krumholz HM,
Ting HH. Factors associated with 30-day readmission rates after percuta-
3. Wasfy JH, Rosenfield K, Zelevinsky K, Sakhaja R, Lovett A, Spertus JA,
Wimmer NJ, Mauri L, Normand SL, Yeh RW. A prediction model to iden-
tify patients at high risk for 30-day readmission after percutaneous coro-
DM, Lovett A, Weiner BH, Jacobs AK, Normand SL. Sources of hospital
variation in short-term readmission rates after percutaneous coronary
NJ, Jacobs AK, Venditti FJ, Sharma S, King SB III. 30-day readmission
rates for patients undergoing percutaneous coronary interventions in New York
RG, Krumholz HM. All-cause readmission and repeat revascularization after
7. Harjai KJ, Singh M, Boura J. Early readmissions after percutaneous coro-
nary intervention in a rural tertiary care center (from the Guthrie Health
8. Ricciardi MJ, Selzer F, Marroquin OC, Holper EM, Venkitachalam L,
Williams DO, Kelsey SF, Laskey WK. Incidence and predictors of 30-day
hospital readmission rate following percutaneous coronary intervention
(from the National Heart, Lung, and Blood Institute Dynamic Registry).
9. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among
2009;360:1418–1428.
JJ, Mattera JA, Wang Y, Krumholz HM. An administrative claims measure
suitable for profiling hospital performance on the basis of 30-day all-cause
readmission rates among patients with heart failure. Circ Cardiovasc Qual
11. Krumholz HM, Lin Z, Drye EE, Desai MM, Han LF, Rapp MT, Mattera
JA, Normand SL. An administrative claims measure suitable for profiling
hospital performance based on 30-day all-cause readmission rates
among patients with acute myocardial infarction. Circ Cardiovasc Qual
http://www.ncdr.com/WebNCDR/analytics/pcireadmissionmeasure.
JA, Zeleninsky K, Normand SL, Mauri L, Yeh RW. Causes of short-term
readmission after percutaneous coronary intervention. Circ Cardiovasc
IM, Yuan CT, Green JC, Kline-Rogers E, Wang Y, Curtis JP, Webster TR,
Masoudi FA, Fonarow GC, Brush JE Jr, Krumholz HM. National efforts
to improve door-to-balloon time results from the door-to-balloon alliance.
15. Landman AB, Spatz ES, Cherlin EI, Krumholz HM, Bradley EH, Curry
LA. Hospital collaboration with emergency medical services in the care of
patients with acute myocardial infarction: perspectives from key hospital

Key Words: Editorials • patient readmission • percutaneous coronary
intervention
Living in the Readmission Era
Karl E. Minges and Jeptha P. Curtis

Circ Cardiovasc Interv. 2014;7:9-10
doi: 10.1161/CIRCINTERVENTIONS.114.001174
Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/7/1/9