Prevention of Contrast-Induced Nephropathy With N-Acetylcysteine or Sodium Bicarbonate in Patients With ST-Segment–Myocardial Infarction
A Prospective, Randomized, Open-Labeled Trial

Per Thayssen, MD, DMSci; Jens Flensted Lassen, MD, PhD; Svend Eggert Jensen, MD, PhD; Knud Nørregaard Hansen, MD; Henrik Steen Hansen, MD, DMSci; Evald Høj Christiansen, MD, PhD; Anders Junker, MD, PhD; Jan Ravnkilde, MD, DMSci; Leif Thuesen, MD, DMSci; Karsten Tange Veien, MD; Lisette Okkels Jensen, MD, DMSci, PhD

Background—Contrast-induced nephropathy (CIN) is a serious condition in patients with ST-segment–elevation myocardial infarction treated with primary percutaneous coronary intervention. We compared the risk of acute CIN and the influence of preventive strategies in patients with ST-segment–elevation myocardial infarction undergoing primary percutaneous coronary intervention.

Methods and Results—A total of 720 patients were randomized in the Prevention of Contrast-induced Nephropathy in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention (CINSTEMI) trial. Patients were randomly assigned in a 1:1:1:1 ratio to receive hydration with sodium chloride together with 1 of 4 prophylactic regimes (1) N-acetylcysteine (NAC), (2) sodium bicarbonate (NaHCO₃) infusion, (3) NAC in combination with NaHCO₃, or (4) hydration with sodium chloride infusion alone. Patients in cardiogenic shock were excluded. Acute CIN was defined as an increase in serum creatinine concentration ≥25% from the baseline value within a 3-day period. Overall, CIN occurred in 141 (21.9%) patients. The prevention treatment with NAC, NaHCO₃, or the combined NAC and NaHCO₃ did not reduce the rate of CIN significantly compared with hydration with intravenous sodium chloride infusion alone (20.1% versus 20.1% versus 20.8% versus 26.5%; P=NS). However, an increase in serum creatinine >25% from the baseline value to 30 day was significantly lower in patients treated with combined NAC and NaHCO₃ (18.7% versus 19.1% versus 9.2% versus 21.3%; P=0.033).

Conclusions—Treatment with NAC or NaHCO₃ did not reduce the rate of acute CIN significantly. Combined treatment with NAC and NaHCO₃ may reduce the risk of renal dysfunction after 30 days.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT01160627.

Key Words: contrast-induced nephropathy ■ ST-segment–elevation myocardial infarction

Contrast-induced nephropathy (CIN) is a well-known and important side effect to the use of contrast media when performing coronary angiography (CAG) or percutaneous coronary intervention (PCI). Defined as a relative increase in serum creatinine of ≥25% or an absolute rise of ≥44 μmol/L, this complication is low (<3%) in patients without known renal dysfunction or renal risk factors, whereas it is ≤50% in patients with known renal risk factors and dysfunction.1-3 In case of primary PCI, the risk of CIN is 10% to 20%.4-6 Usually, CIN develops within the first 2 to 3 days with a peak in serum creatinine level 3 to 5 days after contrast exposure. In general, serum creatinine normalizes within 7 to 10 days after contrast exposure. However, in patients with ST-segment–elevation myocardial infarction (STEMI), after primary PCI the impaired renal function might persist in almost half of the patients with CIN.7 The effect of contrast media on renal function is complex and not fully understood. Initially, a reduction in glomerular filtration occurs because of changes in intrarenal and systemic regulatory mechanisms.8 Furthermore, an endothelial dysfunction, an erythrocyte aggregation with increased viscosity, and a decreased erythrocyte velocity are followed by a decreased oxygen tension together with a directly toxic
WHAT IS KNOWN

• Contrast-induced nephropathy is a serious condition in patients with ST-segment–elevation myocardial infarction treated with primary percutaneous coronary intervention.
• Usually, contrast-induced nephropathy develops within the first 2 to 3 days with a peak in serum creatinine level 3 to 5 days after contrast exposure.
• To avoid these serious side effects of contrast administration, 2 precautions in general are recommended to reduce the dose of contrast media as much as possible and to ensure optimal hydration before and immediately after the procedure.

WHAT THE STUDY ADDS

• Contrast-induced nephropathy overall occurs in 21.9% patients with no significant difference between 4 prophylactic regimes (1) N-acetylcysteine, (2) sodium bicarbonate infusion, (3) N-acetylcysteine in combination with sodium bicarbonate, or (4) hydration with sodium chloride infusion alone.
• An increase in serum creatinine >25% from the baseline value to 30 day was significantly lower in patients treated with combined N-acetylcysteine and sodium bicarbonate.
• Contrast-induced nephropathy at day 3 did not differ significantly among patients with (creatinine clearance ≤60 mL/min) or without reduced creatinine clearance (creatinine clearance >60 mL/min) at baseline.

of NAC and intravenous NaHCO₃, alone or in combination, we initiated the present randomized and prospective study.

Methods

Study Design

The study was designed as a randomized multicenter, open-labeled, 4-arm study where patients were randomly assigned in a 1:1:1:1 ratio into 4 groups: (1) standard treatment with intravenous sodium chloride (0.9%) alone giving 260 mL/h for a minimum of 6 hours, (2) standard treatment+NAC 1200 mg orally before PCI followed by 1200 mg daily during the next 48 hours, (3) standard treatment+isotonic NaHCO₃ (167 mmol/L) intravenously as 500 mL in the first hour followed by infusion of 100 mL per hour in the next 5 hours (in total 1000 mL), and (4) standard treatment+NAC as in group 2+isotonic NaHCO₃ intravenously as in group 3. Serum creatinine was measured at admission (day 0), the next morning (day 1), and the following 2 days (day 2 and day 3). Finally, the serum creatinine was measured at day 30 after the index procedure (Figure 1).

Patients

From May 2010 to March 2012, patients for the study were recruited from the 3 university hospitals in Western Denmark: Odense University Hospital, Aarhus University Hospital, Skejby, and Aalborg University Hospital. Eligible patients were all individuals aged ≥18 years being admitted for STEMI and having primary PCI performed within 12 hours from the onset of chest pain. Excluded from participation in the study were patients in cardiogenic shock, being unconscious, ventricular fibrillation or cardiac arrest before primary PCI, malignant disease, severe infection, or chronic treatment with dialysis. Excluded from the study after enrollment were patients having cardiac surgery or any other major surgery within 30 days after index PCI, or a new contrast media examination (ie, CAG or PCI) within 30 days. All patients were asked for participation after CAG when the indication for PCI was confirmed. Written informed consent was obtained before PCI. The study was approved by the Danish Medicines Agency (EUDRACT no. 2009-017642-32) and the Scientific Ethical Committee for Southern Denmark (jr. no. S-20090149).

Primary PCI

This was performed according to a common protocol for all 3 hospitals. The catheterization laboratory was notified when the diagnosis of STEMI was established, whether in the prehospital phase (tele-ECG transmission), at the referring hospital, or in the emergency room in 1 of the 3 university hospitals. All patients were admitted directly to the catheterization laboratory. All patients were pretreated with aspirin 600 mg, clopidogrel 300 mg or ticagrelor 180 mg, and heparin 10000 IU. At the discretion of the PCI operator, this treatment was supplemented by glycoprotein IIb/IIIa receptor inhibitor or bivalirudin. The STEMI diagnosis was ensured based on typical symptoms present <12 hours, characteristic ECG changes with ST-segment–elevation ≥0.1 mV in ≥2 standard leads or v4 through v6 or ≥0.2 mV in ≥2 contiguous precordial leads [v1 through v3], or a presumed new developed left bundle branch block. Patients not belonging to the intake areas of the university hospitals were usually discharged within 24 hours to their local hospital, where the study-related blood test was taken at day 2 and day 3. For the 30-day serum creatinine blood sample test, a laboratory requisition was sent to the patients 3 weeks after enrollment, and the patients had this blood test taken at a local hospital.

Randomization

Patients were enrolled by the investigators and randomly allocated to treatment groups after diagnostic CAG and before PCI. Block randomization by center was used to assign patients in a 1:1:1:1 to (1) standard treatment with intravenous sodium chloride (0.9%) alone, (2) standard treatment+NAC 1200 mg orally before the PCI followed by 1200 mg daily during the next 48 hours, (3) standard treatment+isotonic NaHCO₃ intravenously as 500 mL in the first hour.
followed by infusion of 100 mL per hour in the next 5 hours (in total 1000 mL), and (4) standard treatment+combined NAC (as in group 2)+isotonic NaHCO₃ intravenously (as in group 3). An independent organization computer generated the allocation sequence, stratified by sex and presence of diabetes mellitus. Patients were assigned to treatment through a Web-based Trial Partner randomization system. Although operators were not blinded, all individuals analyzing data were masked to treatment assignment.

End Points
The primary end point of the present study was CIN defined as a rise in serum creatinine of ≥25% from baseline value at admission to the value at day 3 (48–72 hours) after the index procedure. Secondary end points were (1) changes in serum creatinine from day 3 to day 30, (2) changes in serum creatinine from admission to day 30, (3) increase in serum creatinine of ≥25% from day 0 to day 30, and (4) increase in serum creatinine of ≥25% from day 0 to day 3 with a persistent increase in serum creatinine of ≥25% at day 30 compared with day 0. Intention-to-treat analyses were conducted after 3 days and 30 days of follow-up. Data monitoring was performed by the Good Clinical Practice unit at Odense University Hospital. An independent event committee, which was blinded to treatment group assignment during the adjudication process, reviewed all end points and source documents to adjudicate causes of death, reasons for hospitalization, diagnosis of myocardial infarction. Cine films were reviewed in the event committee to classify stent thrombosis and target vessel revascularization (either with PCI or coronary artery bypass grafting).

Definitions
The study end points were defined as follows:
CIN: a rise in serum creatinine of ≥25% from baseline value at admission to the value at day 3 (48–72 hours) after the index procedure. In patients who developed CIN, persistent renal damage was defined as persistence of increase in serum creatinine of ≥25% from baseline value at admission to the value at day 30.

The modification of diet in renal disease formula¹⁸ was used to calculate the estimated creatinine clearance=186×standardized serum-creatinine⁻¹·₁⁴×age⁻₀·₂⁰₃×0·₇₄₂ (if women).

Statistical Analysis
The number of patients included in the study was based on previous trials with NAC and NaHCO₃. We assumed a rate of CIN of ≥25% in patients with hydration with sodium chloride only, 15% in patients treated with NAC, 8% in patients treated with NaHCO₃, and 4% in patients treated with combined NAC and NaHCO₃. To test this expected response with a power of 80%, a minimum of 125 patients in each of the 4 treatment groups had to be included. Thus, a minimum of 150 patients in each treatment group was prespecified for enrollment to compensate for withdrawal of consent or cardiac events with or without contrast within 30 days. Distributions of continuous variables in the 4 groups of patients, NAC, isotonic NaHCO₃, combined NAC+isotonic NaHCO₃, and standard treatment with saline, were compared using the Kruskal–Wallis test. Distributions of categorical variables were compared using the χ^2 test (primary end point: CIN defined as a rise in serum creatinine of ≥25% from baseline value at admission to the value at day 3). Serial creatinine concentrations and creatinine clearance were compared (secondary end point) within (index compared with day 3 and day 30, respectively) and between groups (at each time point) using a Kruskal–Wallis test. To account for multiple comparisons, the Bonferroni correction was used. Three treatments were compared with standard; thus a significance level of 0.05/3=0.017 was used for pairwise comparisons. The statistical analysis was performed using SPSS version 20.0.

Results
In total, 720 patients were enrolled and randomized, 5 patients were excluded because of withdrawal of consent. The patient characteristics were similar between the 4 groups (Table 1). Lesion characteristics and supplementary medication
demonstrated no differences between the 4 groups (Table 2). In 26 patients, the primary end point CIN within 3 days was not assessed (death=2, new angiogram/PCI n=24), and in another 32 patients, the secondary end point with changes in serum creatinine from day 3 to day 30 was not assessed (death=4, new angiogram/PCI n=28). Baseline serum creatinine levels were obtained before angiography in 713 patients (99.7%). Serum creatinine levels were available at day 3 in 644 patients (93.4%), day 30 in 571 patients (86.9%), and at all 3 time points in 536 patients (81.8%). The flow diagram of the trial is provided in Figure 1.

Contrast-Induced Nephropathy

Baseline renal function and volume of contrast medium did not differ significantly between the 4 groups (Tables 1 and 2). The primary end point CIN occurred overall in 141 (21.9%) patients with no significant difference between the 4 groups: NAC n=32 (20.1%) versus isotonic NaHCO3 n=33 (20.1%) versus combined NAC+isotonic NaHCO3 n=33 (20.8%) versus standard treatment with sodium chloride n=43 (26.5%; P=0.32; Figure 2). CIN at day 3 did not differ significantly among patients with or without reduced creatinine clearance at baseline: creatinine clearance >60 mL/min n=132 (22.4%) versus creatinine clearance ≤60 mL/min n=9 (17.5%; P=0.360). The secondary end point, the change in serum creatinine concentration between admission (before angiography), day 3, and day 30, is shown in Table 3. Increase in serum creatinine of ≥25% from day 0 to day 30 (secondary end point) was seen in 97 (17.0%) patients, with a significant difference between the 4 groups: NAC n=28 (18.7%) versus isotonic NaHCO3 n=27 (19.1%) versus combined NAC+isotonic NaHCO3 n=13 (9.2%) versus standard treatment with sodium chloride n=29 (21.3%; P=0.033). Compared with standard therapy with sodium chloride, only treatment with combined NAC+isotonic NaHCO3 reduced the risk of increase in serum creatinine of ≥25% from day 0 to day 30 significantly (P=0.005), which was significant after Bonferroni correction (Figure 3). In patients who developed CIN, persistent renal damage occurred in 55 (48.2%): NAC n=15 (57.7%) versus isotonic NaHCO3 n=14 (56.0%) versus combined NAC+isotonic NaHCO3 n=8 (29.6%) versus standard treatment with sodium chloride n=18 (50.0%; P=0.150). At day 30, the creatinine value was measured in 571 patients, and the persistent renal damage in 55 patients constitutes 39% of all patients (n=141) with CIN within day 3. None of the patients had renal failure requiring dialysis.

Clinical Outcome

Within 3 days, 2 (0.3%) patients died (cardiac death), 3 (0.3%) patients had an acute definite stent thrombosis, 3 (0.3%) patients had a new myocardial infarction, 3 (0.3%) patients had a target lesion revascularization, and 4 patients (0.6%) had a target vessel revascularization. Eleven patients (1.5%) had a new angiogram for a clinical reason without intervention and 9 (1.3%) patients had a nonculprit artery PCI. Two patients (0.3%) had pulmonary edema within 24 hours; both patients were randomized to treatment with combined NAC+isotonic NaHCO3. Within 30 days, 6 (0.6%) patients died (cardiac death), 3 (0.3%) patients had an acute definite stent thrombosis, 1 (0.1%) patient had a subacute definite stent thrombosis, 6 (0.6%) patients had a new myocardial infarction, 7 (1.0%) patients had a target lesion revascularization, and 11 patients (1.5%) had a target vessel revascularization. Twenty patients (2.8%) had a new angiogram for a clinical reason without intervention, and 24 (3.3%) patients had a nonculprit artery PCI. A composite major adverse cardiac event rate (cardiac death, myocardial infarction, target vessel revascularization) at 30-month follow-up was 1.8%; NAC n=0

Table 1. Characteristics of Patients

<table>
<thead>
<tr>
<th>Valid Cases</th>
<th>NAC</th>
<th>NaHCO3</th>
<th>NAC+NaHCO3</th>
<th>Standard Treatment</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients, n</td>
<td>715</td>
<td>176</td>
<td>181</td>
<td>177</td>
<td>181</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>715</td>
<td>127 (72.2)</td>
<td>139 (76.8)</td>
<td>139 (78.5)</td>
<td>145 (80.1)</td>
</tr>
<tr>
<td>Age, y (interquartile range)</td>
<td>715</td>
<td>63.0 (55.0−70.8)</td>
<td>62.0 (52.0−75.0)</td>
<td>63.0 (53.5−73.0)</td>
<td>63.0 (55.0−72.0)</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>684</td>
<td>82 (48.8)</td>
<td>88 (51.2)</td>
<td>79 (46.5)</td>
<td>89 (51.1)</td>
</tr>
<tr>
<td>Body mass index, kg/m2 (interquartile range)</td>
<td>661</td>
<td>26.5 (24.3−29.4)</td>
<td>26.1 (24.4−28.9)</td>
<td>26.4 (24.3−29.7)</td>
<td>26.6 (24.2−29.6)</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>715</td>
<td>15 (8.5)</td>
<td>17 (9.4)</td>
<td>19 (10.7)</td>
<td>18 (9.9)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>695</td>
<td>58 (34.5)</td>
<td>62 (35.6)</td>
<td>68 (38.6)</td>
<td>58 (32.8)</td>
</tr>
<tr>
<td>Previous coronary artery bypass grafting, n (%)</td>
<td>704</td>
<td>1 (0.6)</td>
<td>2 (1.1)</td>
<td>1 (0.6)</td>
<td>3 (1.7)</td>
</tr>
<tr>
<td>Previous percutaneous coronary intervention, n (%)</td>
<td>693</td>
<td>23 (13.7)</td>
<td>20 (11.4)</td>
<td>17 (9.7)</td>
<td>13 (7.5)</td>
</tr>
<tr>
<td>Previous myocardial infarction, n (%)</td>
<td>692</td>
<td>21 (12.5)</td>
<td>18 (10.3)</td>
<td>14 (8.0)</td>
<td>14 (8.0)</td>
</tr>
<tr>
<td>Lipid-lowering therapy, n (%)</td>
<td>693</td>
<td>39 (23.2)</td>
<td>41 (23.4)</td>
<td>46 (26.3)</td>
<td>45 (25.7)</td>
</tr>
<tr>
<td>Serum creatinine level, mg/dL</td>
<td>713</td>
<td>0.84 (0.71−0.97)</td>
<td>0.87 (0.74−1.01)</td>
<td>0.88 (0.74−1.00)</td>
<td>0.87 (0.74−1.03)</td>
</tr>
<tr>
<td>Serum creatinine level, μmol/L</td>
<td>713</td>
<td>74.0 (63.0−86.0)</td>
<td>77.0 (65.0−89.0)</td>
<td>78.0 (65.5−88.9)</td>
<td>77.0 (65.0−91.0)</td>
</tr>
<tr>
<td>eGFR, mL/min 1.73 m2</td>
<td>713</td>
<td>94.3 (76.7−109.8)</td>
<td>91.4 (75.7−110.5)</td>
<td>90.8 (76.5−107.8)</td>
<td>89.5 (76.4−105.3)</td>
</tr>
<tr>
<td>Hemoglobin A1c</td>
<td>660</td>
<td>0.057 (0.055−0.060)</td>
<td>0.058 (0.055−0.061)</td>
<td>0.058 (0.055−0.061)</td>
<td>0.058 (0.055−0.062)</td>
</tr>
<tr>
<td>Left ventricle ejection fraction, n (%)</td>
<td>647</td>
<td>50.0 (45.0−60.0)</td>
<td>50.0 (45.0−60.0)</td>
<td>50.0 (40.0−55.5)</td>
<td>50.0 (40.0−60.0)</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>667</td>
<td>130.0 (110.0−142.8)</td>
<td>130.0 (110.0−140.0)</td>
<td>130.0 (118.0−140.0)</td>
<td>120.0 (116.0−148.0)</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>667</td>
<td>70.0 (60.0−80.0)</td>
<td>70.0 (60.0−80.0)</td>
<td>71.5 (60.0−80.0)</td>
<td>72.0 (60.0−80.0)</td>
</tr>
</tbody>
</table>

eGFR indicates estimated glomerular filtration rate; NAC, sodium bicarbonate; and NaHCO3, sodium bicarbonate.
(0.0%) versus isotonic NaHCO₃ n=6 (3.6%) versus combined NAC+isotonic NaHCO₃ n=3 (1.7%) versus standard treatment with sodium chloride n=4 (2.2%; P=0.127).

Discussion

The present randomized, open-labeled study in patients with STEMI demonstrates an overall rise in serum creatinine >25% in 22% of the patients from admission to day 3 without any difference in patients treated prophylactically with NAC, NaHCO₃, NAC+NaHCO₃, or hydration with sodium chloride. However, at 30 days, the group treated with the combination of NAC+NaHCO₃ had a significantly lower rate of increase in serum creatinine >25% compared with standard treatment, or treatment with either NAC or NaHCO₃ alone. After 30 days, half of the patients with CIN had persistent impaired renal function. Although patients in cardiogenic shock, severe general or...
infectious disease, and dialysis-treated patients were excluded in the present study, the overall average rise in serum creatinine >25% from admission to day 3 was of the same magnitude as found by others in patients with STEMI.4,7,17 The reason for contrast-induced renal impairment still remains unclear, but vasoconstriction because of tubular damage and oxidative stress, which together with increased interstitial renal pressure, lead to medullary hypoperfusion, and lowered glomerular filtration may contribute significantly.19 These changes occur because of cytotoxicity and increased viscosity of the contrast media. In the present study, almost all patients had Iodixanol (visipaque), a nonionic, dimeric, and iso-osmolar contrast medium, which is shown to have a low nephrotoxic effect in different subsets of patients with or without impaired renal function,20,21 but the matter of which type of contrast media that is most kidney-friendly is still under debate.22 The relationship between impaired renal function after contrast media and prognosis has been well documented with a poorer prognosis for an impaired kidney function, as well in patients with precontrast-impaired kidney function.23–25 Many efforts have, therefore, been done to find regimens or drugs to prevent CIN. To find an effective prevention of CIN is, in particular, important in patients with STEMI treated with primary PCI in whom knowledge of possible kidney risk factors or disease is not present before injecting contrast media to the coronary arteries. In the present study, we have examined the preventive effect on the kidney function using either NAC, NaHCO₃, or both and compared the possible efficacy to standard treatment with sodium chloride intravenously alone. In addition, the use of contrast media was reduced as much as possible, being in average 140 mL per procedure, because of the fact that the degree of impaired kidney function is depending on the dose of contrast used.26 In accordance with the previous studies,12,27 our patients in the standard group and in the NAC group did have a sodium chloride infusion to keep them well hydrated during and after the PCI procedure, whereas this was done by isotonic NaHCO₃ in the other 2 groups.

Table 3. Change in Serum Creatinine and Creatinine Clearance

<table>
<thead>
<tr>
<th></th>
<th>Index</th>
<th>Day 3</th>
<th>Day 30</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum creatinine, μmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC, median (interquartile range)</td>
<td>74.0 (63.3−85.8)</td>
<td>80.0 (68.0−92.8)</td>
<td>81.5 (69.0−92.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>NaHCO₃, median (interquartile range)</td>
<td>78.5 (65.0−89.0)</td>
<td>84.0 (72.0−95.8)</td>
<td>81.5 (72.3−96.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>NAC+NaHCO₃, median (interquartile range)</td>
<td>77.0 (66.0−88.0)</td>
<td>86.0 (75.0−98.0)</td>
<td>82.0 (73.3−93.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Standard treatment (sodium chloride), median (interquartile range)</td>
<td>77.0 (65.0−90.0)</td>
<td>83.0 (73.0−99.0)</td>
<td>82.0 (73.0−97.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>P value</td>
<td>0.467</td>
<td>0.063</td>
<td>0.546</td>
<td></td>
</tr>
<tr>
<td>Creatinine clearance, mL/min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC, median (interquartile range)</td>
<td>94.9 (76.8−109.6)</td>
<td>85.1 (73.9−97.0)</td>
<td>82.8 (73.8−96.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>NaHCO₃, median (interquartile range)</td>
<td>89.8 (76.1−108.4)</td>
<td>81.6 (70.5−93.7)</td>
<td>81.5 (69.0−99.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>NAC+NaHCO₃, median (interquartile range)</td>
<td>92.2 (76.5−107.6)</td>
<td>81.1 (69.9−93.0)</td>
<td>82.7 (73.5−95.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Standard treatment (sodium chloride) median, (interquartile range)</td>
<td>90.9 (77.5−103.8)</td>
<td>80.2 (68.8−94.7)</td>
<td>81.8 (67.3−94.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>P value</td>
<td>0.881</td>
<td>0.414</td>
<td>0.948</td>
<td></td>
</tr>
</tbody>
</table>

NAC indicates N-acetylcysteine; and NaHCO₃, sodium bicarbonate.
is a potent antioxidant and by this supposed to prevent a direct oxidative tissue damage in the kidney. A possible beneficial clinical effect has been investigated in several studies in patients with chronic nephropathy showing different results. Only in 2 studies, the effect has been investigated in patients with primary PCI. In agreement with the results from the present study, no beneficial effect on the occurrence of CIN using high-dose NAC could be proven, although patients in the study of Thiele et al included severely ill patients in hemodynamic deranged condition. Thiele et al found an occurrence of CIN in 14% of NAC-treated patients, despite using a slightly higher contrast volume and enrolling patients in Killip class 4 and patients treated with intra-aortic balloon pump. Whether patients with cardiogenic shock may benefit more from treatment with NAC cannot be addressed from the data from the study by Thiele et al or our studies.

NaHCO3 is an alkalinizing agent with alkalinizing effect on the renal tubular fluid and is by this theoretically able to reduce oxidative tissue damage in the kidney induced by contrast media. In patients with STEMI, a regimen with preprocedure and postprocedure hydration therapy with NaHCO3 appeared to be more efficacious than postprocedure hydration only with isotonic sodium chloride. This is in accordance with our study. Although we did not find a significant reduction in CIN in NaHCO3-treated patients, the rate of CIN was numerically lower in NaHCO3-treated patients compared with patients hydrated with sodium chloride only. Furthermore, Merten et al demonstrated in a randomized setting, comparing hydration with isotonic sodium chloride or isotonic NaHCO3 in patients with impaired renal function undergoing either CAG or PCI, a significant reduction of CIN from 13.8% in the sodium chloride group to 1.7% in the NaHCO3 group. This is in contrast to our results, but patients characteristics were different because the patients enrolled in our study did not have a known impaired renal function and the hydration protocols differed with respect to the hydration with sodium chloride.

From a theoretical point of view, the combination of NAC and NaHCO3 might be the superior strategy because these drugs in combination may exert a potent antioxidative effect and by this reduce the harmful consequence of contrast media. In the present study, this could not be proven in the acute phase after primary PCI, but at long-term follow-up at 30 days, a significant reduction in serum creatinine was observed in the group with NAC+NaHCO3 compared with standard treatment. A similar beneficial result has been reported by Briguori et al in patients with chronic kidney disease, where a significantly lower proportion of patients with CIN was observed in the group treated with NAC+NaHCO3 compared with the group treated with isotonic sodium chloride+NaHCO3 2 days after contrast exposure. A meta-analysis reviewing 10 randomized controlled studies, mostly in patients with chronic kidney disease, showed significantly fewer patients with CIN in the group with NAC+NaHCO3 compared with sodium chloride+NaHCO3 when defined as an increase of 0.5 mg/dL but not when defined as a 25% increase in serum creatinine. A beneficial effect of intravenous NaHCO3+NAC was also demonstrated in the study of Recio-Mayoral et al in patients undergoing PCI for acute coronary syndromes, showing a significant lower occurrence of CIN within the first week after index PCI. In that study, CIN was defined as an increase in serum creatinine of >0.5 mg/dL, but the protective effect was also present using the definition for CIN as an increase in serum creatinine of >25% from baseline. In a recent study by Leone et al, a group of urgent PCI patients had kidney protection with high-dose NAC+NaHCO3 and was compared with a historic control group being treated with high-dose NAC+isotonic sodium chloride. Defining CIN as an increase of >25% in serum creatinine, they found a significant reduction in both in-hospital death and occurrence of CIN, the latter reduced from 14.1% to 8.0% 2 days after contrast exposure by the treatment with NAC+NaHCO3. In the present study, we did not observe any difference at 3 day but first at 30-day follow-up. The reason for this is unexplained, and this secondary end point result is hypothesis generating and merits formal confirmation. Also, after 30 days, overall one fifth of the patients had impaired renal function, and half of the patients with CIN had persistent impaired renal function. The same was found in a retrospective
observational registry, where half of the patients with CIN within 2 days had persistent impaired renal function, and these patients experienced more adverse clinical events that patients who did not develop CIN. Recently Maioli et al.44 found that persistent renal damage occurred in ≈20% of patients 3 months after contrast exposure in patients with reduced creatinine clearance at the time of the contrast exposure. This may indicate that CIN is not always a transient impairment of the renal function but rather a direct cause of worsening renal function.

Limitations
Like most PCI trials, the Prevention of Contrast-induced Nephropathy in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention (CINSTEMI) trial was designed as a single-blinded study, but we think that the lack of double-blindedness would not influence the results because all end points were objective and determined by an event committee, who was blinded to treatment group assignment during the adjudication process. The diagnostic angiogram was performed just before the randomization and initiation of the prophylactic treatment. However, we do not think that this treatment of prophylactic regimes delay of minutes would have influenced on the results in a STEMI population. Patients in cardiogenic shock or with prehospital cardiac arrest were excluded from the study because these clinical circumstances by themself may influence creatinine levels the first days after the index primary PCI. Because we excluded these patients, the results from the CINSTEMI cannot be extrapolated to patients with STEMI and cardiogenic shock or prehospital cardiac arrest. In a population without known renal insufficiency, the baseline creatinine level would be expected to be lower compared with patients with preexisting renal insufficiency. With the end point definition used in the present study, which is comparable with the literature, a 25% increase in serum creatinine at day 3 requires a smaller absolute increase in patients with a normal or low baseline creatinine compared with patients with renal insufficiency or increased creatinine level. In this way, our study differs from studies where patients with known renal insufficiency are examined, and our results cannot be extrapolated to a population with known renal insufficiency. Furthermore, the results in the present STEMI population cannot be generalized to patients with stable angina pectoris, where proper lead times could be available for treatment with prophylactic regimes.

Conclusions
Treatment with NAC or NaHCO₃ did not reduce the rate of acute CIN significantly. However, combined treatment with NAC and NaHCO₃ may reduce the risk of renal dysfunction after 30 days.

Appendix
Please see the Data Supplement for additional information regarding CINSTEMI.

Disclosures
Dr Thayssen has received an unrestricted grant to his institution from Medtronic, Terumo, and Cordis. Dr Jensen has received an unrestricted grant form Terumo and honoraria from AstraZeneca. The other authors report no conflicts.

References

Prevention of Contrast-Induced Nephropathy With N-Acetylcysteine or Sodium Bicarbonate in Patients With ST-Segment–Myocardial Infarction: A Prospective, Randomized, Open-Labeled Trial

Per Thayssen, Jens Flensted Lassen, Svend Eggert Jensen, Knud Nørregaard Hansen, Henrik Steen Hansen, Evald Høj Christiansen, Anders Junker, Jan Ravkilde, Leif Thuesen, Karsten Tange Veien and Lisette Okkels Jensen

Circ Cardiovasc Interv. 2014;7:216-224; originally published online April 8, 2014; doi: 10.1161/CIRCINTERVENTIONS.113.000653

Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/7/2/216

Data Supplement (unedited) at:
http://circinterventions.ahajournals.org/content/suppl/2014/04/08/CIRCINTERVENTIONS.113.000653.DC1
Supplemental Material

Contributors

PT formulated the study design, which the steering committee and all authors subsequently accepted. PT and LOJ were responsible for data management and for design and implementation of the statistical analysis. All other authors enrolled patients and contributed to data collection. PT and LOJ contributed to the design of the statistical analysis and the interpretation of results. PT and LOJ drafted the report, which was subsequently reviewed by all authors. All authors have seen the final submitted report and agree with its contents.

Role of funding sources

The study was an academic study without funding.

Coordinating Center:

Department of Cardiology, Odense University Hospital, Odense, Denmark

Critical Events Committee:

Mogens Lytken Larsesn, MD, DMSci, Odense University Hospital, Odense, Denmark
Anne Sejr Knudsen MD, Vejle Hospital, Vejle, Denmark
Lisbeth Antonsen, MD, Odense University Hospital, Odense, Denmark

Data and Monitoring Center:

Helle Cappelen, RN, Department of Cardiology, Odense University Hospital, Odense, Denmark
Lisette Okkels Jensen, MD, DMSci, PhD, Department of Cardiology, Odense University Hospital, Odense, Denmark

Steering Committee:
Per Thayssen, MD, DMSci, Odense University Hospital, Odense, Denmark (chairman)
Lisette Okkels Jensen, MD, DMSci, PhD, Odense University Hospital, Odense, Denmark
Jens Flensted Lassen, MD, PhD, Aarhus University Hospital, Skejby, Aarhus, Denmark
Svend Eggert Jensen, MD, PhD, Aalborg University Hospital, Aalborg, Denmark