Response to Letter Regarding Article, “Thermodilution-Derived Coronary Blood Flow Pattern Immediately After Coronary Intervention as a Predictor of Microcirculatory Damage and Midterm Clinical Outcomes in Patients With ST-Segment–Elevation Myocardial Infarction”

We thank Drs Echavarría-Pinto and Escaned1 for their interest in our article.2 To analyze coronary blood flow pattern, thermodilution curves need to be obtained by brisk injection of 3 mL of room temperature saline by hand into the coronary artery through the guiding catheter at steady-state hyperemia.3 As pointed by Drs Echavarría-Pinto and Escaned,1 however, the shape of thermodilution curve could be changed by the vascular volume between the tip of the guiding catheter and the location of the sensor. Although the interobserver reproducibility for the shape of thermodilution curve was not tested, we think that the measurement error for thermodilution curve was minimal. During the measurement, the sensor was positioned at a point 7 cm distal from the ostium of each coronary artery and steady-state maximum hyperemia was obtained.

The index of microcirculatory resistance values were significantly lower in the narrow unimodal group than in the wide unimodal and the bimodal groups (20±9, 65±41, and 76±38 U, respectively; P<0.001). We showed our data and we adjusted for multiplicity using the Bonferroni method. No significant difference existed in index of microcirculatory resistance values between the wide unimodal and the bimodal groups (Padjusted=0.366; Padjusted=0.66).

We think that this easily assessable coronary flow patterns are useful in clinical risk stratification for patients with ST-segment–elevation myocardial infarction.

Disclosures

None.

References


Response to Letter Regarding Article, "Thermodilution-Derived Coronary Blood Flow Pattern Immediately After Coronary Intervention as a Predictor of Microcirculatory Damage and Midterm Clinical Outcomes in Patients With ST-Segment–Elevation Myocardial Infarction"

Masashi Fukunaga, Kenichi Fujii, Daizo Kawasaki, Hisashi Sawada, Koujiro Miki, Hiroto Tamaru, Takahiro Imanaka, Toshihiro Iwasaku, Tsuyoshi Nakata, Masahiko Shibuya, Hirokuni Akahori, Motomaru Masutani, Kaoru Kobayashi, Mitsumasa Ohyanagi and Tohru Masuyama

Circ Cardiovasc Interv. 2014;7:418
doi: 10.1161/CIRCINTERVENTIONS.114.001589
Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/7/3/418

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Interventions can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Interventions is online at:
http://circinterventions.ahajournals.org//subscriptions/