Distance, Delay, and Discontent

Thomas Aversano, MD

Discontent is the first necessity of progress.

—Thomas Edison

In November of 1993, 3 reports that published simultaneously in the New England Journal of Medicine demonstrated the superiority of primary percutaneous coronary intervention (PCI) over thrombolytic therapy for treatment of patients with acute ST-segment–elevation myocardial infarction (STEMI).1-3 At that time, within my hospital system, the Johns Hopkins Health System, there were 2 acute care hospitals: the Johns Hopkins Hospital, a tertiary center with both PCI and cardiac surgery capability, and the Bayview Medical Center, a community hospital that could provide neither revascularization modality. In 1993, ≈20 patients with acute STEMI presented to our tertiary facility annually, whereas our community hospital admitted >5x that number. Because State healthcare regulation prohibited performance of PCI at hospitals without colocated cardiac surgery, the superior therapy could be applied at the hospital where the minority of patients presented, whereas at the hospital where the overwhelming majority of patients with STEMI presented primary PCI was not available.

For a variety of reasons, expansion of primary PCI is neither feasible nor desirable at all hospitals that receive patients with STEMI. This is particularly true in smaller, rural facilities. The clear superiority of primary PCI as therapy for acute STEMI and the fact that its benefit is optimal when applied promptly has led to the development of several approaches other than expanding the number of PCI-capable hospitals aimed at maximizing the number of patients with STEMI who receive primary PCI and minimizing time to its application. Thus, Mission-Lifeline and other programs emphasize creation of regional systems of STEMI care that involves care coordination among patients, referring and PCI-capable hospitals, providers and medical transport systems.5-7

How well have these strategies worked? One’s assessment of a set of facts importantly depends on the lens through which those facts are viewed. In this issue of Circulation: Cardiovascular Interventions, Nicholson et al describe a system of interhospital transport of patients with STEMI still wanting, with median door-in-door-out (DIDO) times of 52 minutes and achievement of first-door-to-balloon times in excess of 120 minutes in half of patients with STEMI. Yet compared with the situation 2 decades ago, this report demonstrates remarkable success in reducing interhospital transport times and time to reperfusion. The median distance between referral and receiving hospitals is not 3.1 miles, but 31.9 miles, and the temporal “distance” 39, not 11, minutes. Yet transport and first-door-to-balloon times are far better than our interhospital transfer results 2 decades ago.

The authors are right, however, in not being content with the current situation because, like in 1993, patients who present to the “wrong hospital” do not receive optimal treatment according to current guidelines. In dissecting the causes of prolonged time to reperfusion among patients requiring transport from a referral to a PCI-capable hospital, it is clear that the receiving hospitals are “ready” for the patient, with median door-to-PCI times <30 minutes. Most of treatment delay is related to getting the patient out of the referral hospital and into a transport, the DIDO time. The components of this time include identification of STEMI, prohibited by regulations requiring EMS to transport to the nearest hospital.

Discontent with these alternatives led to The Cardiovascular Patient Outcomes Research Team primary PCI study,4 a randomized trial comparing the outcomes of primary PCI and thrombolytic therapy performed at hospitals without onsite cardiac surgery. Similar to other studies conducted at tertiary hospitals, the Cardiovascular Patient Outcomes Research Team primary PCI study demonstrated the superiority of primary PCI over thrombolytic therapy for patients with STEMI treated at hospitals without colocated cardiac surgery. This study and others led to the expansion of primary PCI capability to hospitals without onsite cardiac surgery, increasing access and decreasing the time to application of this superior reperfusion therapy.

This situation was replicated in many areas around the country, essentially restricting access to the better form of therapy for many patients with STEMI. The rationalized solution to this dilemma offered 2 alternatives: (1) continue to simply offer the “community hospital standard of care,” thrombolytic therapy, to patients with STEMI presenting to non-PCI hospitals or (2) transfer patients from non-PCI–capable to PCI-capable facilities for primary PCI. We were not satisfied with these proposed solutions. In the first, an inferior therapy is offered to patients with STEMI simply because of an accident of geography: they presented to the “wrong” hospital. Furthermore, transfer was not practical. According to Google Maps, in the absence of traffic, the Hopkins tertiary and community hospitals are separated geographically by 3.1 miles and temporally by 11 minutes. Yet in 1993, transfer could take ≥180 minutes because Emergency Medical Services (EMS) was not available for hospital-to-hospital transport on an emergency basis. Parenthetically, selective triage (transport of patients with STEMI directly to a PCI-capable hospital) was

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Johns Hopkins Heart and Vascular Institute, Baltimore, MD. Correspondence to Thomas Aversano, MD, Johns Hopkins Heart and Vascular Institute, Johns Hopkins Cardiology at GBMC, GBMC, Suite 5104, Baltimore, MD 21204, E-mail taverson@jhmi.edu (Circ Cardiovasc Interv. 2014;7:739-740.) © 2014 American Heart Association, Inc.

Circ Cardiovasc Interv is available at http://circinterventions.ahajournals.org DOI: 10.1161/CIRCINTERVENTIONS.114.002158
decision on the treatment, agreement by the patient for recom-
meded treatment and transport, acceptance of the patient at
the receiving hospital, arrangement for transport to the receiv-
ing hospital, and then actual transport. The authors properly
identify this DIDO time as an important focus of improving
reperfusion time in patients requiring transport to a PCI-capable
facility. There is likely no one-size-fits-all logistical plan that
applies to all referral hospitals, but the goals of that plan are
similar1: rapid ECG acquisition, preferably in the field,2 rapid
ECG interpretation,3 an algorithm for decision-making and
obtaining consent from the patient for treatment and transfer,4
prearranged algorithm for rapid determination of transport
mode and its availability,5 reading the patient for transport (eg,
changing intravenous tubing and pumps if required for a par-
ticular mode of transport), and6 prearranged receiving hospital
alert mechanism. Prearrangement and practiced algorithms are
keys to reducing the DIDO time. Monitoring and modification
of the process outcomes of such a system is required over time.

Another method to reduce the DIDO time is to eliminate it com-
pletely with selective triage, bypassing hospitals without primary
PCI capability. Selective triage is relatively easy in an urban and
suburban environment where field to PCI-capable hospital transport is
relatively short geographically and temporally. In fact, in some
States, such as Maryland, selective triage of patients with STEMI
diagnosed in the field is part of the EMS protocol. In a more rural
setting, this may also be possible, as Nicholson et al6 suggest, but
may be somewhat more difficult to effect. Selective triage could
be associated with adverse outcomes if patients who might other-
wise be stabilized promptly in the closest hospital are instead trans-
ported 230 minutes to a PCI-capable hospital for a procedure for
which they may or may not actually be a candidate, depending on
whether the correct in-field diagnosis is made. Selective triage
at distances averaging 31.9 miles and transport times averaging 39
minutes seems to require accurate EMS-diagnosis, assessment of
clinical stability and patient understanding and acceptance of rela-
tively long transport. In addition, a significant number of patients
with STEMI do not use EMS and arrive at the receiving hospital
by car. Although appealing conceptually, there may be limits to
selective triage, and a robust and efficient transport algorithm for
patients with STEMI remains a necessity.

Developing and sustaining regionalized systems of care is
costly both in terms of human and financial resources. Nicholson et al6
are right to be dissatisfied with the current relationship between distance and delay, and, by identifying where delay is greatest, point the way toward improving the system of care for patients with STEMI who present to hospi-
tals that cannot provide primary PCI.

During the past 2 decades, the thoughtful and diligent effort of
literally thousands of professionals contributed to a remark-
able improvement in providing prompt reperfusion to the great-
est number of patients with STEMI by expanding the number of
hospitals providing primary PCI, improving the logistics of care
and, as documented in the current report, improving the trans-
port of patients to those facilities. Pioneers like Raymond Bahr
who conceived of the chest pain center,7 more recent work of
national organizations like the American Heart Association and
Mission-LifeLine, healthcare regulators, researchers, practicing
physicians, paramedics, nurses and technical staff, and hospital
administrators all made important contributions.

These improvements come at a substantial cost. The current
system of primary PCI requires 24/7/365 physician, nursing,
and technical staff. The extension of PCI capability to more
hospitals stresses human and financial resources. Although
not often considered, in developing countries where the inci-
dence of coronary artery disease is rising, primary PCI is
not practical because of an insufficient number of providers,
insufficient infrastructure, and the prohibitive cost their devel-
oment. Therefore, although expanding the number of PCI-
capable hospitals and improving the system of care and its
logistical components to provide access to the best care for the
greatest number of patients with STEMI is an important and
worthy effort, development a noninvasive, universally applica-
cable, and reliable reperfusion therapy is the ultimate goal. We
should remain discontent with STEMI care until then.

Disclosures

None.

References

1. Grines CL, Browne KF, Marco J, Rothbaum D, Stone GW, O’Keefe J,
Overlie P, Donohue B, Chelliah N, Timmis GC, Vlietstra RE, Strzelecki M,
Puchrowicz-Ochocki S, O’Neill WW. Primary Angioplasty in Myocardial
Infarction Study Group. A Comparison of Immediate Angioplasty with
A comparison of immediate coronary angioplasty with intravenous strep-
BJ; for the MayoCoronary Care Unit and Catheterization Laboratory Groups.
Immediate angioplasty compared with the administration of a thrombolytic
agent followed by conservative therapy for myocardial infarction. N Engl J
4. Aversano T, Aversano LT, Passamani E, Knatterud GL, Terrin ML,
Williams DO, Forman SA; Atlantic Cardiovascular Patient Outcomes
Research Team (C-PORT). Thrombolytic therapy vs primary percutane-
ous coronary intervention for myocardial infarction in patients presenting
to hospitals without on-site cardiac surgery: a randomized controlled trial.
5. Henry TD. From concept to reality: a decade of progress in regional ST-
doi: 10.1161/CIRCULATIONAHA.112.114140.
6. Jollis JG, Al-Khalidi HR, Monk L, Roettig ML, Garvey JL, Aluko AO,
Wilson BH, Applegate RJ, Mears G, Corbett CC, Gcranger RB; Granger
Regional Approach to Cardiovascular Emergencies (RACE) Investigators.
Expansion of a regional ST-segment-elevation myocardial infarction
CIRCULATIONAHA.111.086049.
7. Jollis JG, Granger CB, Henry TD, Antman EM, Berger PB, Moyer PH,
Pratt FD, Rosko IC, Acuña AR, Roettig ML, Jacobs AK. Systems of care for
ST-segment-elevation myocardial infarction: a report From the American
2012;5:423–428. doi: 10.1161/CIRCOUTCOMES.111.964668.
8. Nicholson BD, Dhindsa HS, Roe MT, Chen AY, Jollis JG, Kontos MC.
Relationship of the distance between non-PCI hospitals and primary PCI
centers, mode of transport, and reperfusion time among ground and air in-
thospital transfers using NCDR’s ACTION Registry-GWTG: a report from
the American Heart Association Mission: Lifeline Program. Circ Cardiovasc
9. Joseph AJ, Cohen AG, Bahr RD. A formal, standardized and evidence-
based approach to Chest Pain Center development and process improve-
ment: the Society of Chest Pain Centers and Providers accreditation

Key Words: Editorial ■ myocardial infarction ■ percutaneous coronary
intervention
Distance, Delay, and Discontent
Thomas Aversano

_Circ Cardiovasc Interv._ 2014;7:739-740
doi: 10.1161/CIRCINTERVENTIONS.114.002158
_Circulation: Cardiovascular Interventions_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/7/6/739

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Interventions_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Interventions_ is online at:
http://circinterventions.ahajournals.org//subscriptions/