Coronary Obstruction in Transcatheter Aortic Valve-in-Valve Implantation

Preprocedural Evaluation, Device Selection, Protection, and Treatment

Danny Dvir, MD; Jonathon Leipsic, MD; Philipp Blanke, MD; Henrique B. Ribeiro, MD; Ran Kornowski, MD; Augusto Pichard, MD; Joseph Rodés-Cabau, MD; David A. Wood, MD; Dion Stub, PhD; Itsik Ben-Dor, MD; Gabriel Maluenda, MD; Raj R. Makkar, MD; John G. Webb, MD

The majority of surgical heart valves being implanted during the past decade are bioprosthetic, tissue valves with limited durability.1–4 These tissue valves have limited durability.2–4 Recently, implantation of transcatheter valves inside failed surgically implanted aortic bioprostheses (valve-in-valve [VIV]) has been reported as a less-invasive alternative to repeat surgery.5 Although procedural success is achieved in the great majority of patients, this therapy is associated with several potential risks, including ostial coronary occlusion.6,7

Coronary obstruction is a serious procedural complication, associated with a high mortality rate.5–9 Importantly, during the recent years, several preprocedural and technical aspects have been described to identify those patients at increased risk. Therefore, in such high-risk patients, a modified VIV procedure, redo surgical valve replacement, or medical treatment only may be considered (Figure 1). We herein review the mechanisms of coronary obstruction, the optimal identification of patients at risk for coronary obstruction, and further describe technical considerations for preventing and treating this life-threatening complication.

Incidence and Mechanism of Coronary Obstruction After VIV

In the setting of native aortic valve stenosis, transcatheter aortic valve replacement (TAVR) is associated with a relatively low risk of coronary ostial obstruction, consistently <1%.3,8 Most commonly, the left main artery is involved, whereas obstruction of the right coronary is infrequent.10 Similarly, acute hemodynamic collapse is common although delayed presentation may also occur.7,11 Importantly, coronary obstruction is 3- to 4-fold more common after VIV TAVR when compared with native valve TAVR.8 The VIV International Data (VIVID) Registry initially reported a coronary obstruction incidence of 3.5% of patients and 2.5% in a recent multicenter registry for coronary obstruction.7,8 Arguably, this phenomenon may be underestimated because coronary obstruction can be incomplete or mitigated by patent bypass grafts.

Assessing the risk of coronary obstruction requires understanding the mechanisms involved. Most commonly, coronary obstruction is the consequence of a bioprosthetic leaflet coming in direct, or near-direct, contact with a coronary ostium, or with the aortic root surrounding a coronary ostium (Figure 2A and 2B). This concern is universal to all transcatheter heart valve (THV) designs and is dependent on the characteristics of the surgical bioprosthesis and the relationship of its leaflets with the coronary ostia (Table 1).

The distance between the annulus and the coronary ostia, commonly assessed in the setting of native valve TAVR, is less relevant when evaluating the risk for coronary obstruction associated with VIV implantation. The main predisposing factor in the setting of VIV is the proximity of the coronary ostia to the anticipated final position of the displaced bioprosthetic leaflets after THV implantation. After THV implantation, the surgical valve leaflets typically extend up in a somewhat tubular fashion from the circular frame to which they are attached. To some degree, the 3 commissural posts of a typical stented bioprosthesis may limit the outward displacement of the bioprosthetic leaflets. However, these valve posts are generally easily deflected outward by an oversized THV. Furthermore, cardiac surgeons typically place these posts aligned with the native valve commissures, remote from the coronary ostia, thus limiting its protective role in VIV implantation. In addition, the surgical prosthesis may have been implanted in a slightly tilted position in regard to the long axis of the aortic root, which may lead to the reduction of the distance of the prosthesis to a coronary ostium.

Received October 19, 2014; accepted December 17, 2014.

From the Department of Cardiology, St. Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada (D.D., J.L., P.B., D.A.W., D.S., J.G.W.); Department of Cardiology, Quebec Heart & Lung Institute, Laval University, Quebec City, Quebec, Canada (H.B.R., J.R.-C.); Department of Cardiology, Rabin Medical Center, Petach Tikva, Israel (R.K.); Department of Cardiology, Medstar Washington Hospital Center, DC (A.P., I.B.-D.); Department of Cardiology, Cardiovascular Center, Hospital San Borja Arriaran, Santiago, Chile (G.M.); and Department of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA (R.R.M.).

Correspondence to John G. Webb, MD, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC, Canada V6Z 1Y6. E-mail john.webb@vch.ca (Circ Cardiovasc Interv. 2015;8:e002079. DOI: 10.1161/CIRCINTERVENTIONS.114.002079.)

© 2015 American Heart Association, Inc.

Circ Cardiovasc Interv is available at http://circinterventions.ahajournals.org

DOI: 10.1161/CIRCINTERVENTIONS.114.002079
Figure 1. Flow chart of suggested evaluation and treatment of a candidate for aortic Valve-in-Valve implantation. (1) Details in Tables 1 to 3. (2) According to imaging and clinical characteristics. (3) Balloon valvuloplasty will optimally model the risk for coronary occlusion using a balloon size similar to the transcatheter heart valve (THV) device to be implanted. The risk for hemodynamic instability after valvuloplasty secondary to worsening regurgitation should be considered, and a THV device should be prepared for rapid implantation if needed. (4) If the patient is hemodynamically stable after valvuloplasty and the risk for left main occlusion seems high, considerations for redo surgery or medical treatment only could be made, otherwise coronary protection is advocated using a wire and a stent. (5) Consider using a retrievable THV device or a device with a leaflet clipping mechanism. (6) Obtain several angiographic pictures from different pictures, while the guide is withdrawn, to evaluate for obstruction before wire and stent removal. (7) Emergent surgical revascularization could be considered if percutaneous approach is not successful. (8) Because coronary obstruction occasionally has delayed presentation and could be only partial or intermittent, all valve-in-valve cases considered high risk for coronary obstruction should have focused clinical, ECG, and echocardiographic evaluation for related symptoms or signs of myocardial ischemia. In selective cases, repeat coronary angiography should be considered.

Because coronary obstruction is usually the result of interaction between a surgical bioprosthesis and the coronary ostium, predisposing factors for coronary obstruction may include a supra-annular bioprosthesis valve, a narrow and low-lying sinotubular junction, bulky bioprosthetic leaflets, low-lying coronaries in narrow aortic root (shallow sinuses, previous root reconstruction), and reimplanted coronaries. It should be emphasized that coronary obstruction is not caused by low position of the coronary ostia unless the sinuses are relatively shallow. In addition, coronary obstruction may be more common with stenotic (often bulky), as opposed to regurgitant bioprostheses. Stentless bioprosthetic valves or those that are internally stented (eg, Mitroflow, Sorin; Trifecta, St. Jude Medical) may be at a higher risk because the leaflets of these bioprostheses may extend outward in a tubular fashion after VIV implantation beyond the surgical device frame (Figure 2A and 2B). Yet, it should be noted that Mitroflow is one of the most common bioprosthesis in the VIVD registry and in majority of setting these VIV cases the procedure was uneventful. Nevertheless, it could be suggested that prevention of coronary
obstruction in VIV starts at the index surgical valve replacement. Device selection during surgery and technical approach inside the aortic root may have a significant clinical effect when these patients are considered for VIV years later.

Fluoroscopic Assessment

Aortic root angiography can be extremely helpful in identifying patients at risk for coronary occlusion (Table 2). Unfortunately, aortic root angiography is often not performed or

Figure 2.

A, A model of an aortic root with a surgical bioprosthesis (Mitroflow 27). B, Implantation of a 26-mm Sapien XT results in coronary ostium occlusion (arrow). C, Schematic drawing illustrating the implantation of a THV into a stented bioprosthesis with 3 posts in the setting of a coaxial aligned bioprosthesis in a capacious aortic root (right), a noncoaxial (tilted) bioprosthesis in a capacious aortic root (middle), and a coaxial aligned bioprosthesis in a noncapacious aortic root with a narrow sinotubular junction (left). Top, A left main view, the lower image a short-axis view at the level of the left main ostium. For assessment of the VTC distance, a virtual ring with the diameter of the fully expanded, anticipated THV is superimposed onto the short-axis image. Compared with the sinus diameter and the coronary ostia height, which are equal in left and middle examples, the VTC distance also accounts for the relative orientation of the bioprosthesis with in the aortic root.
Table 1. Possible Risk Factors for Coronary Obstruction After Valve-in-Valve Implantation

<table>
<thead>
<tr>
<th>Anatomic factors</th>
<th>Bioprosthesis valve factors</th>
<th>Transcatheter valve factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-lying coronary ostia</td>
<td>Supra-annular position</td>
<td>Extended sealing cuff</td>
</tr>
<tr>
<td>Narrow sinotubular junction/low sinus height</td>
<td>High leaflet profile</td>
<td>High implantation</td>
</tr>
<tr>
<td>Narrow sinuses of Valsalva</td>
<td>Internal stent frame (eg, Mitroflow, Trifecta)</td>
<td></td>
</tr>
<tr>
<td>Previous root repair (eg, root graft and coronary reimplantation)</td>
<td>No stent frame (homograft, stentless valves)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bulky leaflets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transcatheter valve factors</td>
<td></td>
</tr>
</tbody>
</table>

performed suboptimally for the purposes of coronary ostial evaluation. Poor contrast enhancement of the aortic root, injections well above the sinotubular junction, while panning, at low magnification, or with an inadequate contrast volume are common technical issues. Figure 3 displays common technical errors that may limit the ability of angiography to assess coronary occlusion risks.

The optimal angiographic projection to assess coronary obstruction risk should be perpendicular to both the surgical bioprosthesis and the coronary ostia. Because left coronary obstruction is most common and of greater clinical effect, special attention to the relationship between the bioprosthesis and the left coronary ostium should be undertaken. The plane of the bioprosthetic valve is typically tilted up to the left, and the left coronary artery typically originates posteriorly from the aorta. Consequently, a left anterior oblique projection with cranial angulation is generally required. Determining the optimal plane perpendicular to the bioprosthetic valve can usually be accomplished by finding a fluoroscopic projection where the radiopaque components of the circular bioprosthetic basal ring appear as a straight line or the radiopaque components of the valve posts appear to be at the same height (Figure 4A, mosaic with post markers; Figure 4E, Edwards valve with both ring and posts visible; Figure 5A, Mitroflow with radiopaque ring). If the bioprosthesis is radiolucent, then a perpendicular view may be identified when angiography demonstrates 3 symmetrical cusps.

Finding a projection perpendicular to the coronary ostia is more complex. A simple maneuver that provides perpendicularity to the coronary ostia is the 1-2 technique (Figure 4). The fundamental principle is that surgeons typically implant aortic bioprostheses in a fashion that avoids positioning the commissural posts directly in front of the coronary ostia. The coronary ostium are typically mid distance between 2 posts (Figure 2A); consequently, a projection perpendicular to a coronary ostium is usually achieved when the 2 adjacent posts are perfectly superimposed (Figure 3). In a 1-2 view, the superimposed posts are located both anterior and posterior to the surgical valve leaflet that extends more laterally. However, the surgical valve leaflet will commonly not extend more lateral than the most lateral position of the ring (Figure 4C and 4G). The 1-2 maneuver maybe performed for either the left main or for the right coronary ostium. Usually 1 combination will allow for perpendicularity for the left main, whereas another combination will enable perpendicularity for the right coronary ostium. Obviously, this technique is of little value when the bioprosthetic valve posts are radiolucent (ie, Mitroflow). However, in this case, the radiopaque and saddle-shaped valve ring will often bear a constant relationship to the valve posts, facilitating easy identification of an equivalent view (Figure 5).

Table 2. Optimal Fluoroscopic and Angiographic Assessment for Coronary Occlusion in Valve-in-Valve

<table>
<thead>
<tr>
<th>Collimated high frame rate imaging of a magnified area</th>
<th>Contrast injection slightly above the surgical valve</th>
<th>Large amount of contrast (especially in regurgitant valves, in selective cases simultaneous double catheter injections)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perpendicularity to the bioprosthesis</td>
<td>Perpendicularity to coronary ostium (if unknown an attempt in LAO-cranial projection for left main)</td>
<td>Semiselective coronary injections</td>
</tr>
<tr>
<td>Alignment of bioprosthesis posts (1-2 vs 1-1-1)</td>
<td>Injection above an inflated aortic balloon (before device implantation)</td>
<td></td>
</tr>
</tbody>
</table>

LAO indicates left anterior oblique.

Coronary Angiography

Coronary angiography can suggest high risk for occlusion and can also reveal the size of the territory at risk if occlusion occurs. Ostial coronary stenosis may probably add to a risk of complete occlusion in some cases. Patency of bypass grafts, significant collateral flow, and right versus left coronary dominancy may alter the clinical significance of coronary occlusion.

Poor contrast opacification of the aortic root is relatively common in patients with failed bioprostheses. Aortic regurgitation leads to a rapid clearing of contrast from the aortic root and is common, being at least moderate in 61% of failed bioprostheses in the VIV International Data registry. Semiselective injection of contrast in coronary ostia may provide optimal assessment of the geometric relationship between the failed surgical valve and the coronary ostia with little contrast (Figures 4 and 5). As outlined above, injection should be performed in a projection that will be both perpendicular to the surgical valve and to the coronary ostium. When faced with no or an inadequate aortic root angigram, a review of the diagnostic selective coronary angiograms, particularly left anterior oblique cranial injection of the left coronary, will occasionally reveal adequate reflux to allow for assessment of the relationship between the bioprosthetic valve and the ostium of the left main.

Computed Tomographic Evaluation

Multidetector computed tomography (CT) is an important tool for assessing the risk of coronary occlusion in native valve
Although the optimal methodology for CT screening of the risk of coronary occlusion in the context of VIV is still in evolution, the integration of CT screening has already been shown to enable a reduction in the incidence of coronary occlusion in VIV.14 CT allows for 3-dimensional assessment of the aortic root dimensions and assessment of the relative position of the components of the surgical prosthesis as they relate to anatomic landmarks. Analogously to CT assessment before native TAVR, relevant anatomic measurements include the

Figure 3. Common technical issues limiting fluoroscopic assessment of the risk for coronary obstruction after valve-in-valve. \textbf{A}, Catheter location is too high. \textbf{B}, Limited contrast volume in a regurgitant bioprosthesis. \textbf{C}, The view is not perpendicular to the surgical bioprosthesis. \textbf{D}, The view is not perpendicular to the left main ostium (picture in circle shows the aortic root in a view perpendicular to the left main).

Figure 4. Fluoroscopic evaluation of coronary obstruction risk in a mosaic (\textbf{A–D}) and a Perimount (\textbf{E–H}) bioprostheses. \textbf{A}, The small eyelets in the top of the posts are aligned in 1-1-1 fashion. Even though the projection is perpendicular to the bioprosthesis, coronary obstruction risk is difficult to define (Movie I in the Data Supplement). \textbf{B}, Semi-selective injection in the left main ostium after aligning 2 posts together (arrow) in 1-2 fashion (Movie II in the Data Supplement). \textbf{C}, Reconstruction of the bioprosthesis position in the root reveals that coronary flow will be maintained after valve-in-valve (arrow). \textbf{D}, Semi-selective injection to the right coronary ostium after aligning 2 posts together (arrow) in 1-2 fashion show that the risk for coronary obstruction is low. \textbf{E}, Bioprosthesis posts are aligned in 1-1-1 fashion. Even though the projection is perpendicular to the bioprosthesis, coronary obstruction risk is difficult to define (Movie III in the Data Supplement). \textbf{F}, Semi-selective injection in the left main ostium after aligning 2 posts together (arrow) in 1-2 fashion (Movie IV in the Data Supplement). \textbf{G}, Reconstruction of the bioprosthesis position in the root reveals that coronary flow will be maintained after valve-in-valve (arrow). \textbf{H}, Semi-selective injection in the right coronary ostium after aligning 2 posts together (arrow) in 1-2 fashion show that the risk for coronary obstruction is low.
Coronary distances may confer, at least mechanistically, a sequel of lateral displacement of the leaflets but may still confound evaluation of coronary obstruction risk. For VIV procedures because of the variable relationship between the native annulus and the bioprosthetic leaflets. It is important to understand the specific structural details of the bioprosthesis in question; annular versus supra-annular, internally versus externally stented, stented versus nonstented (Figure 6).

Table 3. Computed-Tomographic Assessment for Coronary Occlusion With Valve-in-Valve

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Risk Stratification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary and bypass graft parameters</td>
<td>Stenosis in coronary ostia</td>
</tr>
<tr>
<td></td>
<td>Patency of bypass grafts</td>
</tr>
<tr>
<td>Aortic root parameters</td>
<td>Sinus of Valsalva diameter</td>
</tr>
<tr>
<td></td>
<td>Sinus height</td>
</tr>
<tr>
<td>Bioprosthetic parameters</td>
<td>Leaflet thickness, significant pannus calcification, or bulkiness</td>
</tr>
<tr>
<td></td>
<td>Post height</td>
</tr>
<tr>
<td>Bioprosthetic–root relationship</td>
<td>Sewing ring plane to coronary ostial height (if below coronary ostia less important)</td>
</tr>
<tr>
<td></td>
<td>Distance from a virtual ring defined by the posts to the sinus of Valsalva</td>
</tr>
<tr>
<td></td>
<td>Distance from a virtual ring defined by the posts to coronary ostia</td>
</tr>
<tr>
<td>VTC distance: virtual THV to coronary ostia (ring at the level of the top of the posts and in a size of THV device to be implanted): high risk <3 mm, intermediate risk 3–6 mm, low risk >6 mm</td>
<td></td>
</tr>
</tbody>
</table>

THV indicates transcatheter heart valve; and VTC, virtual THV-coronary distance.

an increased hazard for coronary occlusion. For practical purposes, we stratify risk based on virtual THV-coronary distance: high risk: <3 mm, intermediate: 3 to 6 mm, low: >6 mm. In addition, for stented valves, it is important to determine whether the stent posts extend above the coronary arteries. For stentless valves, a greater focus on the sinus geometry and short-axis dimensions is important because the sinuses are often effaced and this can result in an increased risk of coronary flow obstruction. Although the diameter of the aortic root at the level of the left coronary ostia seems to be an important measure in native TAVR, it does not account for the sometimes eccentric position of a slightly tilted surgical prosthesis.

Similarly, assessment of the height of the coronary ostia, while helpful in native valve TAVR, seems not as relevant for VIV procedures because of the variable relationship between the native annulus and the bioprosthetic leaflets. It is important to understand the specific structural details of the bioprosthesis in question; annular versus supra-annular, internally versus externally stented, stented versus nonstented (Figure 6).

Typically, the bioprosthetic leaflets extend close to, but not above the top of the bioprosthetic commissural posts. When the coronary ostia originate below the level of the tip of the posts further evaluation is needed to determine the maximal extent of potential lateral displacement of the surgical valve leaflets. Rarely, surgical valve leaflets extending above the sinotubular junction can seal off the aortic root at that level. CT evaluation should identify patients at risk, in whom the planned THV would extend above the sinotubular junction while its diameter exceeding the width of the sinotubular junction. When the coronary ostia originate above the tips of the bioprosthetic posts, coronary obstruction cannot occur as a sequel of lateral displacement of the leaflets but may still result from an obstruction at a higher level (Figure 1C).
THV Strategies in High-Risk Cases

When the risk of coronary occlusion is high, general anesthesia should be considered. This may facilitate rapid institution of hemodynamic support and controlled reperfusion (angioplasty or bypass) should coronary occlusion occur. Similarly, transesophageal echocardiography could be beneficial and may enable prompt diagnosis (eg, new wall motion abnormality) of this complication. There are other procedural considerations that may influence complication risk, including the size, position, and type of implanted THV.

Deliberate selection of a smaller diameter THV or underfilling and thus underexpansion of a balloon expandable THV will result in less lateral displacement of surgical valve posts and leaflets. The smallest available THV device currently available is 20 mm Sapien XT, which will result in the least amount of lateral displacement on surgical valve leaflets and may reduce coronary obstruction risk when implanted in small failed surgical valves. Similarly, a THV positioned low within the bioprosthesis may cause less outward displacement of the surgical valve posts and leaflets than a THV implanted high although postprocedural gradients may be higher in these cases.

The type of THV may also be of relevance. Having a THV device that could be easily retrieved after device implantation is advantageous (eg, Evolut-R, Portico, Lotus, etc). In cases at risk for coronary obstruction, deployment of these THV devices could be followed by clinical and angiographic assessment for coronary flow status. In cases where coronary flow is impaired, the THV device could be removed from the aortic root with relief of the coronary obstruction (Figure 7C and 7D). It should be noted that some devices are retrievable even after

Figure 6. Contrast-enhanced ECG-gated computed tomography for the assessment of coronary occlusion risk. A–C, Failed Mitroflow 23 bioprosthesis at high risk for coronary occlusion. Sinuses are effaced and the coronary to ring distance is short. Short axis at the level of the top of the posts (arrows, B). A virtual 23-mm ring at the level of the coronaries revealing virtual THV-coronary (VTC) distance of only 1.98 mm (<3 mm considered high risk). D–F, Failed Mitroflow 25 bioprosthesis at high risk for coronary occlusion. Fluoroscopic image suggested high risk for coronary occlusion (D). Short axis at the level of the top of the posts (arrows, E) and virtual 23-mm ring revealed VTC distance of 9.33 mm (>6 mm considered low risk). Valve-in-valve was performed without coronary obstruction. G–I, Failed Perimount 25 bioprosthesis at high risk for coronary occlusion. Fluoroscopic image suggested low risk for coronary occlusion (G). Short axis at the level of the top of the posts and virtual 26-mm ring revealed VTC distance of only 2.54 mm (<3 mm considered high risk). Valve-in-valve was performed with coronary obstruction treated by stent implantation.
full implantation (ie, Lotus), whereas others can be removed only before full implantation (ie, Portico). In rare cases, coronary obstruction may occur in the last stage of THV device implantation and, therefore, the ability to remove the THV device after full implantation seems beneficial. THV device removal after full deployment maybe performed also in nonretrievable THV devices, using an inflated aortic balloon inside the THV device or a snaring device. In these cases, the balloon is inflated without rapid pacing, and mechanical pulling of the device is performed (Figure 7E and 7F). The required balloon should be of a similar size to the THV size, or larger.

Other THV devices have unique clipping mechanism (ie, Jena, Engager) that may prevent coronary obstruction by grasping surgical valve leaflets and attaching them firmly to the THV device (Figure 7G and 7H). However, clipping surgical valve leaflets with device fillers could be associated with elevated postprocedural gradients when performed inside small surgical valves. The benefit of using devices with clipping mechanism in high-risk cases for coronary occlusion should be studied further.

Balloon Valvuloplasty

Although balloon inflation is typically safe in the setting of native TAVR, there is a significant risk of tearing degenerated bioprosthetic leaflets. Nevertheless, balloon dilatation inside a failed surgical valve is an extremely useful technique for evaluating the geometric relationship between the surgical valve and the coronary ostia. Balloon inflation results in temporary displacement of the bioprosthetic leaflets in a fashion similar to that occurs with the subsequent THV implantation. Ideally, the diameter of the inflated balloon should be similar to that of the intended THV, and contrast injection should be performed only after full inflation of the balloon (Figure 7A and 7B). Simultaneous aortography allows visualization of the radiolucent bioprosthetic leaflet between the contrast filled balloon and the contrast filled aortic root. Ideally, this is done in a projection perpendicular to the bioprosthetic basal ring and revealing the left coronary ostium (left anterior oblique cranial or 1:2 projection), as previously described.

The used balloon should be compliant (ie, PTX or Tyshak) to not deflect the bioprosthesis leaflets at high pressure. Aggressive balloon dilatation of a degenerated surgical valve should only be performed when a THV implantation can be accomplished rapidly should hemodynamic compromise occur. Balloon dilatation maneuver before VIV is a therapeutic challenge. Patients with coronary obstruction are commonly unstable and delivery of a wire and subsequently a stent toward the coronary vasculature is challenging, especially if in addition to surgical valve leaflets there are overlying THV device struts. A more controlled measure, in cases at high-risk for coronary occlusion, is to place a wire and a stent in the coronary vasculature before THV implantation.

Active Protection

If no preventive measures are taken, coronary obstruction by a displaced surgical valve leaflet after VIV is a therapeutic challenge. Patients with coronary obstruction are commonly unstable and delivery of a wire and subsequently a stent toward the coronary vasculature is challenging, especially if...
be pulled more easily out of the left main ostium during THV implantation. A large caliber guiding catheter should be considered in these cases (≥7Fr). In many cases, the guide catheter could be used instead of the pigtail that is commonly used during THV device implantation. Guiding catheter jailing by long THV devices (ie, CoreValve, Portico) could be performed because the THV radial strength above the annulus is typically not high. Guide wires used in these cases should enable optimal support for stent implantation in face of mechanical obstruction by a displaced leaflet. Obstruction of the coronary ostium by a bioprosthetic leaflet with an overlying THV may result in a significant difficulty in delivering a stent, especially when a patient is hemodynamically unstable. Positioning the stent exactly in the coronary ostium during THV deployment has been performed. However, many operators prefer to place an undeployed stent in the distal coronary, ready to be pulled back and implanted in the ostium if needed.

Coronary Intervention

THV implantation in high-risk cases for coronary obstruction may be optimally performed in a projection perpendicular to both the surgical valve and the coronary ostium at risk (left anterior oblique cranial in high-risk left main obstruction cases or 1-2 bioprosthesis post alignment), to assess coronary patency after THV implantation rapidly. In the exact time of THV implantation, the operator should look for a wire sign: any movement of the coronary wire near the coronary ostium during implantation could be a warning sign for having coronary occlusion (Figure 8A and 8B; Movie VII in the Data Supplement). After THV implantation, contrast injection in several projections and echo evaluation of new wall motion abnormality (if transesophageal echocardiography is used) can reveal if coronary obstruction has occurred. It should be emphasized that coronary obstruction could be partial, and stent implantation in these cases may be considered as well. The operator should obtain several angiographic pictures from different projections while the guide is not directly engaged to the coronary ostium, to evaluate for obstruction and must not rush with removal of coronary wire and stent. We also recommend repeating the angiography after undeployed stent removal, before removing the wire, because hypothetically the stent delivery shaft can maintain coronary patency.

When an undeployed stent is parked in the coronary vascular bed, implantation in the coronary ostium is usually straightforward and can be performed rapidly by pulling the stent back to the correct location. In cases where obstruction is above ostium location (ie, sinotubular junction), a long stent is required. However, using a long stent may make it difficult to cannulate that coronary in the future. Therefore, long stents, extending above the sinotubular junction, should be implanted in selected cases only. The rule is that meticulous assessment of stent position, before its implantation, should be undertaken to verify the stenosis at and proximal to the coronary ostium is covered well. THV device implantation in a projection perpendicular to the coronary ostium may facilitate rapid stent deployment if a complication occurs. High-pressure implantation should be performed, followed by aggressive postdilatation with a non-compliant balloon, including flaring of the stent in the ostium. Contrast injections from several projections should ensure good flow to the coronary vasculature. Because this coronary intervention is for mechanical, nonatherosclerotic, complication, the risk for stent thrombosis is probably higher and effective antiplatelet therapy should be routine. In addition, double antiplatelet therapy duration after this treatment should be prolonged.

The use of supportive measures, such as intra-aortic balloon pump, extracorporeal membrane oxygenator, and emergent surgery, is less defined in cases with coronary occlusion. However,
it should be stressed that the focus should be on restoring flow toward the occluded vessel. Intra-aortic balloon pump must be used only if no significant leakage of the THV device is noted.

Conclusions
Aortic VIV is associated with several potential risks, including ostial coronary occlusion. This is a serious procedural complication, associated with a high mortality rate. This concern is universal to all THV designs. The main predisposing factor, in the setting of VIV, is the proximity of the coronary ostia to the anticipated final position of the displaced bioprosthesis leaflets after THV implantation. Metallocusiferous and cardiac CT assessment may identify most cases at risk. There are numerous strategies that should be used in high-risk cases after excluding the option for redo cardiac surgery. These may include using a retrievable THV device, a device with clipping mechanism or simply undersizing/balloon-underfilling of the THV device. Coronary protection, and intervention, when needed, should be undertaken in high-risk cases to maintain coronary flow and improve clinical outcome. In general, we speculate that by adhering to careful assessment and treatment strategies, as detailed, the risk of coronary obstruction will decrease. New and creative bioprosthetic valve designs and attention, during the index surgical valve replacement, to the potential risk of coronary obstruction with VIV could further prevent this life-threatening complication.

Disclosures
Dr Dvir is a consultant for Edwards Lifesciences. He received honor- ary and grant from Medtronic. Dr Leipsic is a consultant for Edwards Lifesciences. Dr Ribeiro was supported by a research PhD grant from the National Council for Scientific and Technological Development (CNPq), Brazil. Dr Kornowski is a proctor for Medtronic. Dr Pichard is a proctor for Edwards Lifesciences. Dr Wood is a consultant for Edwards Lifesciences. Dr Maluenda is a proctor for Edwards Lifesciences. Dr Makkar received research grants from Edwards, Medtronic, and St Jude. Equity in Entourage Medical. Dr Webb is a consultant for Edwards Lifesciences. The authors report no conflicts.

References

Key Words: coronary intervention; transcatheter aortic valve implantation; valve-in-valve
Danny Dvir, Jonathon Leipsic, Philipp Blanke, Henrique B. Ribeiro, Ran Kornowski, Augusto Pichard, Joseph Rodés-Cabau, David A. Wood, Dion Stub, Itsik Ben-Dor, Gabriel Maluenda, Raj R. Makkar and John G. Webb

Circ Cardiovasc Interv. 2015;8:
doi: 10.1161/CIRCINTERVENTIONS.114.002079

Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/8/1/e002079

Data Supplement (unedited) at:
http://circinterventions.ahajournals.org/content/suppl/2015/03/09/CIRCINTERVENTIONS.114.002079.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation: Cardiovascular Interventions* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation: Cardiovascular Interventions* is online at:
http://circinterventions.ahajournals.org/subscriptions/