A combination of anticoagulant and antiplatelet therapies is foundational to the safe conduct of percutaneous coronary intervention (PCI). This reflects the obligate disruption of coronary vessel integrity and the consequent potential for thrombosis related to PCI. Beginning over 2 decades ago, eptifibatide, an agent that blocks the glycoprotein IIb/IIIa receptor, has been evaluated in clinical trials to ameliorate the potential for PCI-related thrombosis and for improving procedural and clinical outcomes. Although the glycoprotein IIb/IIIa inhibitors have been proven to reduce thrombotic events complicating PCI (death, myocardial infarction, abrupt vessel closure, and stent thrombosis), treatment is accompanied by an increase in the incidence of bleeding events that are in turn associated with worsened cardiovascular outcomes.

See Article by Gurm et al

The ideal PCI antithrombotic regimen eliminates the potential for catheter and device thrombosis, maximizes the clinical efficacy of the procedure, and minimizes the risk of bleeding. The dramatic evolution in interventional device technologies of the past several decades, coupled with the availability of new antithrombotic agents, has remarkably improved procedure success rates and reduced the potential for PCI-related thrombosis. Nonetheless, the package insert dosing recommendation for eptifibatide has not changed since the registration trials of the 1990s. Several investigators have already explored alternative dosing regimens of eptifibatide to minimize both cost and bleeding risk. However, the efficacy and safety of these novel dosing regimens of eptifibatide have yet to be definitively determined, and none of the trials have resulted in changes to the package insert. Considering the permutations of dosing, timing, and duration of not just eptifibatide but also the other antithrombotic adjuncts that can be used during PCI, it is safe to say that the optimal antithrombotic regimen(s) for PCI remains to be identified.

In this issue of *Circulation: Cardiovascular Interventions*, Gurm et al add to the argument that the package insert dosing regimen of eptifibatide is an anachronism. Gurm et al evaluate the in-hospital outcomes of a large cohort of patients at 47 hospitals treated with eptifibatide as an adjunct to PCI. The analysis was of data provided to the Blue Cross Blue Shield of Michigan Cardiovascular Consortium database. Using comparative effectiveness methodologies (including extensive statistical matching), 21,296 analysis-eligible patients were divided into the 21.2% of patients treated with only a bolus of eptifibatide at the time of PCI and the 78.8% receiving standard therapy (bolus plus any continued infusion after the case). In-hospital clinical outcomes, including mortality, bleeding, transfusion, myocardial infarction, repeat PCI, and stent thrombosis, were determined. The key finding was that patients receiving the bolus only of eptifibatide had significantly lower rates of bleeding events (odds ratio, 0.74 [0.58–0.93]; P=0.014) and blood transfusion (odds ratio, 0.69 [0.52–0.92]; P=0.012) although there were no statistically significant differences in rates of mortality, myocardial infarction, repeat PCI, or stent thrombosis. Equally revealing were the relative rates of the classes of events: bleeding events were the most frequent (n=764), followed by transfusion (n=558), with either of these occurring 6 to 8x more frequently than death and =20 times as frequently as stent thrombosis. This disparity in the frequency of bleeding events versus complications related to thrombosis only serves to underscore the need to more aggressively address the former, with the authors appropriately concluding that a bolus only dosing strategy is supported by their findings.

Gurm et al are to be congratulated for attempting to address this real-world scenario using a comparative effectiveness approach. Identifying the optimal antithrombotic regimen(s) for PCI will likely never be approached via randomized clinical trials given the multiplicity of combinations of agents, dosing, and duration and because the economics and politics do not favor the requisite series of trials. Much like many questions in medicine, however, it seems apparent—and is supported by their data—that it is past time for the next chapter to be written with respect to antithrombotic adjuncts in PCI. Further analysis will need to account for the spectrum of thrombotic risk relative to patient presentation, timing of administration of P2Y12 inhibitors, dosing of anticoagulants, and other variables that could not be accommodated in this study. The authors acknowledged that there was insufficient data in the consortium registry to even determine the duration of eptifibatide dosing or whether eptifibatide was discontinued in the catheterization laboratory because of a bleeding event. These limitations argue for more granular data to be collected at the time of PCI procedures if we are to ever
determine the therapeutic approach with the best balance of
efficacy and safety.

Determining the optimal antithrombotic strategy for PCI thus
remains elusive. Although the authors have focused on safety
and efficacy, there are substantial cost implications related to
drug acquisition and administration (and adverse event man-
gement) to be considered in the evaluation matrix. Well-done
comparative effectiveness analyses of larger registries (with
adequate adjustment) are the logical approach to addressing the
90% plus of questions in medicine that cannot or will not be
addressed by randomized clinical trials. Ideally, these types of
analyses could even lead to changes in the package label such
that adjusted dosing regimens (in the case of eptifibatide) would
no longer be considered off-label. Although the traditional posi-
tion is that observational analysis is only hypothesis-generat-
ing, one has to question when sufficient change in practice has
occurred to abandon previously proven and approved strategies.
This construct then allows us to ask the real question: in 2015,
what is the optimal antithrombotic regimen(s) in PCI?

Disclosures
None.

References
1. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cerneck B,
Chambers CE, Ellis SG, Guyton RA, Hollemburg SM, Khot UN, Lange
RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Nallamothu BK,
Ting HH; American College of Cardiology Foundation; American Heart
Association Task Force on Practice Guidelines; Society for Cardiovascular
Angiography and Interventions. 2011 ACCF/AHA/SCAI Guideline for
Percutaneous Coronary Intervention. A report of the American College
of Cardiology Foundation/American Heart Association Task Force on
Practice Guidelines and the Society for Cardiovascular Angiography
JACC.2011.08.007.
2. The IMPACT-II Investigators. Randomised placebo-controlled trial of ef-
fect of eptifibatide on complications of percutaneous coronary interven-
3. The ESPRIT Investigators. The ESPRIT study: a randomised, placebo-
controlled trial of a novel dosing regimen of eptifibatide in planned coro-
4. O’Shea JC, Hafley GE, Greenberg S, Hasselblad V, Lorenz TJ, Kitt MM,
Strony J, Tcheng JE; ESPRIT Investigators (Enhanced Suppression of the
Platelet IIb/IIIa Receptor with Integrilin Therapy trial). Platelet glyco-
protein IIb/IIIa integrin blockade with eptifibatide in coronary stent
intervention: the ESPRIT trial: a randomized controlled trial. JAMA.
5. O’Shea JC, Buller CE, Cantor WJ, Chandler AB, Cohen EA, Cohen DJ,
Gilchrist IC, Kleiman NS, Labina M, Madan M, Hafley GE, Califf RM,
Kitt MM, Strony J, Tcheng JE; ESPRIT Investigators. Long-term efficacy
of platelet glycoprotein IIb/IIIa integrin blockade with eptifibatide in coro-
6. The PURSUIT Trial Investigators. Inhibition of platelet glycoprotein IIb/
IIIa with eptifibatide in patients with acute coronary syndromes. N Engl J
BS, van ’t Hof A, Berdan LG, Lee KL, Strony JT, Hildemand S, Veltri
E, Van de Werf F, Braunwald E, Harrington RA, Califf RM, Newby LK;
EARLY ACS Investigators. Early versus delayed, provisional eptifibatide
t.1056/NEJMoa0901316.
8. Tcheng JE. Clinical challenges of platelet glycoprotein IIb/IIIa receptor
inhibitor therapy: bleeding, reversal, thrombocytopenia, and retreatment.
GW. Incidence, prognostic impact, and influence of antithrombotic
therapy on access and nonaccess site bleeding in percutaneous coronary
JCID.2010.10.011.
SV, Messenger JC, Marso SP; National Cardiovascular Data Registry.
Association between bleeding events and in-hospital mortality after
percutaneous coronary intervention. JAMA. 2013;309:1022–1029. doi:
t.1001/jama.2013.1556.
11. Fung AY, Saw J, Starovoytov A, Densem C, Johk P, Walsh SJ, Fox RS,
Humphries KH, Aymong E, Ricci DR, Webb JG, Hamburger IN, Curere
RG, Buller CE. Abbreviated infusion of eptifibatide after successful coro-
nary intervention: the BRIEF-PCI (Brief Infusion of Eptifibatide
Following Percutaneous Coronary Intervention) randomized trial. J Am
12. Marmur JD, Poludasu S, Agarwal A, Vladutiu P, Feit A, Lapin R,
Cavusoglu E. Bolus-only platelet glycoprotein IIb/IIIa inhibition during
13. Denardo SJ, Davis KE, Tcheng JE. Elective percutaneous coronary interven-
tion using broad-spectrum antiplatelet therapy (eptifibatide, clopidogrel,
and aspirin) alone, without scheduled unfractionated heparin or other anti-
14. Gurum HS, Hosman C, Bates ER, Share D, Hansen BB; Blue Cross
Blueshield of Michigan Cardiovascular Consortium. Comparative
effectiveness and safety of a catheterization laboratory-only epti-
fibatide dosing strategy in patients undergoing percutaneous coronary
intervention. Circ Cardiovasc Interv. 2015;8:e001880. doi: 10.1161/
CIRCINTERVENTIONS.114.001880.

Key Words: Editorials ■ comparative effectiveness research ■ eptifibatide
■ percutaneous coronary intervention
Eptifibatide in Coronary Intervention: Past Time for the Next Chapter
Matthew W. Sherwood and James E. Tcheng

Circ Cardiovasc Interv. 2015;8:
doi: 10.1161/CIRCINTERVENTIONS.115.002340
Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/8/2/e002340

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Interventions can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Interventions is online at:
http://circinterventions.ahajournals.org//subscriptions/