To the Editor:
I read with interest the article by Ladwiniec et al.1 in which they assessed the functional effect of recipient artery revascularization on donor artery stenosis in patients with chorionic total occlusion. One of the main conclusions of their study is that a large increase in fractional flow reserve (FFR) is associated with greater coronary stenosis severity. However, this conclusion is not surprising. I recently published an article in which the donor–recipient artery interaction is clarified by using a mathematical model.2 When the donor artery FFR is defined as FFR_1, the recipient artery FFR, as FFR_2, and n as the ratio of microcirculatory resistance of the recipient artery to the donor artery, the donor artery FFR after releasing the recipient artery stenosis is calculated as per the following Equation (1):

$$\text{FFR}_1' = \frac{\left(n\text{FFR}_1 + \text{FFR}_2\right)(\text{FFR}_1 - \text{FFR}_2) + \text{FFR}_2(1 - \text{FFR}_1)}{n(\text{FFR}_1 - \text{FFR}_2) + \text{FFR}_2(1 - \text{FFR}_2)}$$

Thus, the increase in FFR in the donor artery is calculated as follows:

$$\text{FFR}_1' - \text{FFR}_1 = \frac{\left(n\text{FFR}_1 + \text{FFR}_2\right)(\text{FFR}_1 - \text{FFR}_2) + \text{FFR}_2(1 - \text{FFR}_1)}{n(\text{FFR}_1 - \text{FFR}_2) + \text{FFR}_2(1 - \text{FFR}_2)} - \text{FFR}_1$$

$$= \frac{n(\text{FFR}_1 - \text{FFR}_2) + \text{FFR}_2(1 - \text{FFR}_2)}{n(\text{FFR}_1 - \text{FFR}_2) + \text{FFR}_2(1 - \text{FFR}_2)}$$

The partial differentiation of Equation 2 with respect to FFR_1 becomes

$$\frac{\partial(\text{FFR}_1' - \text{FFR}_1)}{\partial\text{FFR}_1} = -\frac{\text{FFR}_2(1 - \text{FFR}_2)^2(n + \text{FFR}_2)}{(n(\text{FFR}_1 - \text{FFR}_2) + \text{FFR}_2(1 - \text{FFR}_2))^2} < 0$$

The above inequality (3) indicates that the FFR increase in the donor artery stenosis monotonically decreases when the donor artery FFR becomes larger, which is in accordance with the results of the study of Ladwiniec et al.1 Similarly, the partial differentiation in Equation 2 with respect to FFR_2 and n are calculated as follows:

$$\frac{\partial(\text{FFR}_1' - \text{FFR}_1)}{\partial\text{FFR}_2} = \frac{n(1 - \text{FFR}_1)((\text{FFR}_1 - \text{FFR}_2)^2 + \text{FFR}_2(1 - \text{FFR}_1))}{(n(\text{FFR}_1 - \text{FFR}_2) + \text{FFR}_2(1 - \text{FFR}_2))^2} > 0$$

$$\frac{\partial(\text{FFR}_1' - \text{FFR}_1)}{\partial n} = -\frac{n(1 - \text{FFR}_1)((1 - \text{FFR}_2)(\text{FFR}_1 - \text{FFR}_2))}{(n(\text{FFR}_1 - \text{FFR}_2) + \text{FFR}_2(1 - \text{FFR}_2))^2} < 0$$

The inequality (4) demonstrates that the FFR increase in the donor artery stenosis is more significant when the recipient artery FFR is larger. This indicates that the richer the collateral, the stronger the effect of the recipient artery recanalization. The inequality (5) demonstrates that the FFR increase in the donor artery stenosis is less significant when n is larger. This indicates that the smaller the territory that the donor artery supplies through the collateral arteries, the smaller the effect of the recipient artery recanalization. These considerations derived from the inequalities (4) and (5) would also be true; however, the study of Ladwiniec et al.1 failed to prove this. A future study that involves a much larger sample size should prove these considerations.

Disclosures
None.

Naritatsu Saito, MD
Department of Cardiovascular Medicine
Graduate School of Medicine
Kyoto University
Kyoto, Japan

References
Letter by Saito Regarding Article, "Collateral Donor Artery Physiology and the Influence of a Chronic Total Occlusion on Fractional Flow Reserve"
Naritatsu Saito

Circ Cardiovasc Interv. 2015;8:
doi: 10.1161/CIRCINTERVENTIONS.115.002794
Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/8/7/e002794