Plaque rupture and thrombus formation play a key role in the pathogenesis of acute coronary syndrome (ACS).

Moreover, in this clinical setting, percutaneous coronary intervention (PCI) can be hampered by distal embolization of plaque debris and thrombus components, the main determinants of the no-reflow phenomenon. The introduction of optical coherence tomographic (OCT) high-definition visualization of plaque/stent structures in acute patients remains undefined. In this retrospective substudy, we assessed the prognostic impact of postprocedural culprit lesion OCT findings in patients with acute coronary syndrome undergoing percutaneous coronary intervention.

Methods and Results—In the CLI-OPCI (Centro per la Lotta Contro L’Infarto-Optimization of Percutaneous Coronary Intervention) database collecting cases from 5 independent OCT-experienced centers, we retrospectively analyzed postprocedural OCT findings in acute coronary syndrome patients and explored its possible impact (specifically that of residual intrastent plaque/thrombus protrusion) on outcome. From 2009 to 2013, 507 patients (588 lesions) were evaluated. Patients experiencing device-oriented cardiovascular events showed more frequently the features of suboptimal stent implantation defined as the presence of significant residual intrastent plaque/thrombus protrusion (hazard ratio [HR], 2.35; \(P<0.01 \)), in-stent minimum lumen area (MLA) <4.5 mm\(^2\) (HR, 2.72; \(P<0.01 \)), dissection >200 \(\mu m \) at distal stent edge (HR, 3.84; \(P<0.01 \)), and reference lumen area <4.5 mm\(^2\) at either distal (HR, 6.07; \(P<0.001 \)) or proximal (HR, 8.50; \(P<0.001 \)) stent edges. Postprocedural OCT assessment of treated culprit lesion revealed at least one of these parameters in 55.2% of cases, with an associated increased risk of device-oriented cardiovascular events during follow-up (17.9% versus 4.8%; \(P<0.001 \)). Both the presence of at least one of these parameters (HR, 3.69; \(P=0.002 \)) and the residual intrastent plaque/thrombus protrusion (HR, 2.83; \(P=0.008 \)) were confirmed as independent predictors of device-oriented cardiovascular events.

Conclusions—In this retrospective study of acute coronary syndrome patients undergoing percutaneous coronary intervention, a composite of OCT-defined suboptimal stent implantation characteristics at the culprit lesion and residual intrastent plaque/thrombus protrusion was associated with adverse outcome. (Circ Cardiovasc Interv. 2016;9:e003726. DOI: 10.1161/CIRCINTERVENTIONS.115.003726.)

Key Words: acute coronary syndrome ■ percutaneous coronary intervention ■ prognosis ■ registries ■ stents
optical coherence tomography (OCT), a high-resolution intra-coronary imaging technique, has enabled an improved characterization of culprit plaques (especially thrombus and lipid detection) and has allowed the identification of some stent deployment parameters correlating with major adverse coronary events occurrence. In particular, the CLI-OPCI (Centro per la Lotta Contro L’Infarto-Optimization of Percutaneous Coronary Intervention) registries contributed to the definition of suboptimal stent implantation and its negative impact on outcome and speculated on the clinical use of OCT assessment. Preliminary data have suggested that intrastent residual plaque/thrombus protrusion on outcome was appraised. The rate of device-oriented cardiovascular events (DoCE)—a composite of cardiac death, target vessel–related MI (including periprocedural MI, defined as creatine kinase muscle and bone [CK-MB] >3× the upper limit of normal), and target lesion revascularization—represented the primary end point of the study. All outcomes were defined according to the Academic Research Consortium recommendations and adjudicated in a blinded fashion by a central clinical event committee at certified central core laboratory (Rome Heart Research, Rome, Italy).

The CLI-OPCI registry has been sponsored by the Centro per la Lotta Contro L’Infarto-Optimization of Percutaneous Coronary; and thus, no extramural funding was used to support this work.

Procedures
PCI’s were performed using standard techniques and catheters via femoral or radial approach according to the operator/center common practice. Coronary angiography was carried on according to the validated standards. All patients were pretreated with 325 mg aspirin and loaded with 600 mg clopidogrel, 60 mg of prasugrel, or 180 mg of ticagrelor. Intraprocedural unfractionated heparin or bivalirudin was administered to obtain an intraprocedural activated clotting time of 250 to 300 s, whereas adjunctive pharmacological therapy (ie, glycoprotein IIb/IIIa inhibitors) was left to the operator’s choice.

At discharge, dual antiplatelet therapy was recommended for at least 12 months; patients were followed by means of scheduled direct visits (generally at 1 and 6 months) and phone contacts (after 12 months). In case of any adverse event or new hospitalization, additional visits were planned; source documents were obtained and examined in detail by the clinical event committee that adjudicated each event to a specific culprit lesion.

Imaging Measurements and Definitions
All images were analyzed off-line at a certified core laboratory (Rome Heart Research) by readers blinded to the clinical outcome. A computer-assisted system and an automated edge detection algorithm (MEDIS, Leiden, The Netherlands) were adopted for quantitative coronary analysis assessment. OCT was acquired by means of the FD C7 XR or OPTIS system (both St. Jude Medical, St. Paul, MN) with a standardized nonocclusive technique. Importantly, all OCT acquisitions selected for core laboratory reading were performed at the end of the PCI procedure. Conventional definitions were derived from expert consensus OCT documents, whereas applied quantitative OCT definition of suboptimal stent implantation was derived from the CLI-OPCI registries. The following quantitative OCT parameters were considered:

1. Edge dissection: the presence of a linear rim of tissue with a maximal width ≥200 μm and a clear separation from the vessel wall or underlying plaque that was adjacent (<5 mm) to a stent edge.
2. Reference lumen narrowing: lumen area <4.5 mm² in the presence of significant residual plaque adjacent to stent edges.
4. In-stent MLA <4.5 mm².

WHAT IS KNOWN

• Recent studies showed optical coherence tomography (OCT) metrics that were related to clinical outcome after coronary intervention with stenting.
• Nevertheless, clinical consequences of these OCT findings, including plaque/thrombus intrastent prolapse, in the setting of acute coronary syndrome remain undefined.

WHAT THE STUDY ADDS

• This study confirms the OCT usefulness during percutaneous coronary intervention to identify acute coronary syndrome patients at increased risk of adverse outcome. Indeed, residual intrastent plaque/thrombus protrusion, in-stent minimum lumen area <4.5 mm², residual dissection at the distal stent edge, and reference lumen area <4.5 mm², at both stent edges, were observed in half of patients and were associated to an increased risk of adverse cardiac events.
• The adequate treatment of OCT-defined suboptimal stent deployment remains to be investigated.

Methods

Study Design
This study was carried on in the context of the CLI-OPCI project aiming to assess the feasibility and usefulness of an OCT-guided approach during PCI. All centers joining the registry used a dedicated database for data entry, explicit definitions for baseline and procedural characteristics (ie, angiographic features), and scheduled follow-up (by means of direct visit or phone interview).

In this study, we sought to explore, in a large ACS patient population, the correlation between suboptimal stent deployment at the culprit lesion sites and clinical outcomes with the specific goal to assess the role of residual intrastent plaque/thrombus protrusion among the already validated criteria of suboptimal stent deployment.

1. Edge dissection: the presence of a linear rim of tissue with a maximal width ≥200 μm and a clear separation from the vessel wall or underlying plaque that was adjacent (<5 mm) to a stent edge.
2. Reference lumen narrowing: lumen area <4.5 mm² in the presence of significant residual plaque adjacent to stent edges.
4. In-stent MLA <4.5 mm².

Imaging Measurements and Definitions
All images were analyzed off-line at a certified core laboratory (Rome Heart Research) by readers blinded to the clinical outcome. A computer-assisted system and an automated edge detection algorithm (MEDIS, Leiden, The Netherlands) were adopted for quantitative coronary analysis assessment. OCT was acquired by means of the FD C7 XR or OPTIS system (both St. Jude Medical, St. Paul, MN) with a standardized nonocclusive technique. Importantly, all OCT acquisitions selected for core laboratory reading were performed at the end of the PCI procedure. Conventional definitions were derived from expert consensus OCT documents, whereas applied quantitative OCT definition of suboptimal stent implantation was derived from the CLI-OPCI registries. The following quantitative OCT parameters were considered:

1. Edge dissection: the presence of a linear rim of tissue with a maximal width ≥200 μm and a clear separation from the vessel wall or underlying plaque that was adjacent (<5 mm) to a stent edge.
2. Reference lumen narrowing: lumen area <4.5 mm² in the presence of significant residual plaque adjacent to stent edges.
4. In-stent MLA <4.5 mm².
5. Minimum stent area (MSA) <4.5 mm² (assessed along the entire length of the stent and not necessarily corresponding to the MLA site).
6. Residual stenosis: in-stent MLA <70% of the average reference lumen area.24
7. Intrastent plaque/thrombus protrusion: tissue ≥500 μm in thickness protruding between stent struts into the vessel lumen.1,2,5,21

Definition of suboptimal OCT stent implantation required the presence of at least one of the OCT findings that were significantly associated with DoCE in the univariate analysis (Figure 1).

Statistical Analysis

Continuous variables were reported as means (±SD) or median (first– third quartile) in case of normal or skewed distribution; discrete variables were reported as percentages. Student’s Mann–Whitney U, χ², and Fisher exact tests were applied for bivariate analyses when appropriate. Correlation analysis was performed to determine the association between MLA and MSA using Pearson correlation ρ test. The outcome predictive accuracy of intrastent plaque/thrombus protrusion was evaluated with the receiver operating characteristic curve, and highest predictive accuracy of intrastent plaque/thrombus protrusion was identified with the Youden index (J), representing the maximum potential effectiveness, was used to confirm the selected cut-off.2,5 Combined adverse events were evaluated on a per-patient hierarchical basis and summarized as Kaplan–Meier estimates. All variables in Tables 1 and 2 were tested for bivariate association with DoCE and if nominally significant (P<0.05) were simultaneously forced into a Cox regression model to identify independent outcome predictors and to calculate their adjusted hazard ratios (HRs) with associated 95% confidence intervals (CIs). The Cox regression model included the following variables: left ventricular ejection fraction, diabetes mellitus, coronary artery disease family history, chronic kidney disease, non-ST-segment–elevation MI (non-STEMI) diagnosis, multivessel disease, previous MI, in-stent restenosis, ostial lesion treatment, bare metal stent implantation, and suboptimal final OCT result. Finally, the specific impact of intrastent plaque/thrombus protrusion was assessed using a further Cox regression model, including this feature separately from all other OCT parameters. A 2-tailed, P value <0.05 was established as the level of statistical significance for all tests. All statistical analyses were performed using SPSS-PASW 22.0 (IBM, Armonk, NY).

Results

From 2009 to 2013, a total of 507 consecutive patients with ACS diagnosis and poststenting OCT assessment of the identified culprit lesions were retrospectively enrolled from 5 independent high-volume and OCT-experienced centers joining the CLI-OPCI projects.

Tables 1 and 2 summarize the clinical and procedural characteristics of the study population. Median patient age was 63 years (quartiles 55–72 years) with 19.7% females. All patients had an acute clinical presentation, including acute STEMI in 52.3%, non-STEMI in 16.8%, and unstable angina in 31.0%. Treated culprit lesions were located in the left main in 3.1% of cases, left anterior descending artery in 52.9%, left circumflex artery in 18.7%, right coronary artery in 25.0%, and graft conduit in 0.3%. Most of the lesions showed a complex profile (Ellis class B2/C 73.1%); a strategy of prestent thrombectomy was adopted in 48.0% of STEMI patients, whereas direct stenting was performed in only 27.4% of cases. About half of the patients had multivessel disease involvement and were mostly treated with drug-eluting stents or bioresorbable vascular scaffolds (68.0% and 4.6% of lesions, respectively); multiple overlapping stents were implanted in 20.6%, whereas high-pressure stent postdilation was performed in 48.0% of cases. Optimal angiographic success, defined as residual stenosis <30% and final Thrombolysis in Myocardial Infarction 3 flow, was obtained in 89.1% of patients with a periprocedural MI rate of 2.4%.

OCT Analysis

OCT assessment was performed in 588 stented lesions and revealed suboptimal stent implantation findings in 55.2% of the patients. In particular, OCT disclosed in-stent MLA <4.5 mm² in 22.1%, MSA <4.5 mm² in 21.1%, residual stenosis (MLA <70% of the reference lumen) in 24.3%, intrastent plaque/thrombus protrusion >500 μm in 32.1%, malapposition in 48.0%, edge dissection in 13.4%, and reference lumen narrowing in 7.7% of the stented lesions (Table 3).

A high correlation between MLA and MSA was observed (R²=0.933); but in 24/130 (18.5%) lesions, we observed an MSA >4.5 mm² in the presence of an MLA <4.5 mm²; these cases, representing patients with greater atherothrombus prolapse, showed a mean intrastent tissue area percentage of 18.0±12.3%. On the other hand, there were only 5/124 (4.0%) patients with angiographic residual stenosis ≥70% and OCT evidence of significant plaque adjacent to stent edges. The incidence of presence of significant plaque adjacent to stent edges was 18.4% (Tables 1 and 2).

A high correlation between MLA and MSA was observed (R²=0.933); but in 24/130 (18.5%) lesions, we observed an MSA >4.5 mm² in the presence of an MLA <4.5 mm²; these cases, representing patients with greater atherothrombus prolapse, showed a mean intrastent tissue area percentage of 18.0±12.3%. On the other hand, there were only 5/124 (4.0%) patients with angiographic residual stenosis ≥70% and OCT evidence of significant plaque adjacent to stent edges. The incidence of presence of significant plaque adjacent to stent edges was 18.4% (Tables 1 and 2).

Figure 1. Optical coherence tomographic (OCT) criteria identifying suboptimal OCT stent deployment. A, Stent malapposition (stent-adjacent vessel lumen distance >200 μm); B, stent edge dissection (tissue rim with a width ≥200 μm and a clear separation from the vessel wall or underlying plaque); C, in-stent minimum lumen area <4.5 mm²; D, reference lumen narrowing (lumen area <4.5 mm² in the presence of significant plaque adjacent to stent edges); E, intrastent plaque/thrombus protrusion (tissue protruding between stent struts into the vessel lumen and extending >500 μm in thickness).
lesions in which an MSA <4.5 mm\(^2\) was not associated with an MLA <4.5 mm\(^2\); in these cases, a mean malapposition area percentage of 9.1±4.2% was recorded.

In particular, patients with ST-elevation ACS diagnosis showed more frequently intrastent plaque/thrombus protrusion >500 \(\mu\)m (38.1% versus 26.9%; \(P=0.006\)), but the amount of prolapse was similar with or without thrombectomy strategy (0.46±0.25 versus 0.45±0.25; \(P=0.796\)).

DoCE Predictors

During the observed follow-up (median days 345 [quartiles 219–540]), a DoCE occurred in 12.0% of patients, including 2.8% of cardiac mortality, 8.3% of nonfatal target vessel MI, 7.3% of target lesion revascularization, and 4.9% of definite/probable stent thrombosis (Table 4). Notably, 84% of adverse events occurred within the first 12 months after the procedure with a median time to DoCE of 18 days (interquartiles 1–234). No premature dual antiplatelet therapy discontinuation was documented in these cases. Dual antiplatelet therapy regimens included clopidogrel in 50.4%, prasugrel in 33.1%, and ticagrelor in 16.5% of patients with no significant difference among patients with or without adverse events.

When compared with patients without events, patients experiencing DoCE during follow-up showed a higher cardiovascular risk profile characterized by more frequent non-STEMI diagnosis (31.1% versus 14.8%; \(P=0.002\)) with previous MI (31.1% versus 16.6%; \(P=0.008\)), lower median left ventricular ejection fraction (48% [quartiles 40–58] versus 55% [quartiles 47–60]; \(P<0.001\)) and occurrence of coronary artery disease family history (16.4% versus 33.4%; \(P=0.011\)), and slightly higher prevalence of diabetes mellitus (24.6% versus 15.9%; \(P=0.099\); Table 1).

Among the prespecified OCT criteria, patients with DoCE showed a higher prevalence of in-stent MLA <4.5 mm\(^2\) (42.3% versus 19.3%, HR, 2.72; \(P=0.001\)), MSA <4.5 mm\(^2\) (31.0% versus 19.7%, HR, 1.87; \(P=0.017\)), intrastent plaque/thrombus protrusion >500 \(\mu\)m (36.6% versus 31.5%, HR, 2.35; \(P=0.002\)), dissection width >200 \(\mu\)m at the distal stent edge (18.3% versus 6.4%, HR, 3.84; \(P=0.001\)), and reference lumen area <4.5 mm\(^2\) in the presence of residual significant plaque at either the distal (25.4% versus 3.7%, HR, 6.07; \(P<0.001\)) or proximal (14.1% versus 0.8%, HR, 8.50; \(P<0.001\)) stent edges. Conversely, in-stent MLA <70% of the average reference lumen area (31.0% versus 23.4%, HR, 1.28; \(P=0.335\)), dissection at the proximal stent edge (9.9% versus 6.6%, HR, 1.44; \(P=0.358\)), and malapposition >200 \(\mu\)m (49.3% versus...
47.8%, HR, 1.08; \(P = 0.734 \) were not associated with adverse events (Table 3).

OCT analyses revealed a significantly higher prevalence of suboptimal stent deployment parameters (at least 1 OCT finding significantly associated with DoCE) in lesions associated with any adverse event during follow-up (77.5% versus 52.0%; \(P = 0.011 \); Figure 2). In the multivariable Cox hazard analysis, suboptimal OCT stent implantation, defined as the presence of at least 1 OCT finding significantly associated with DoCE, was found to be an independent predictor of worse outcome (HR, 3.69; 95% CI, 1.6–8.4; \(P = 0.002 \)) together with impaired left ventricular ejection fraction (HR, 2.17; 95% CI, 1.1–4.4; \(P = 0.031 \)), non-STEMI diagnosis (HR, 3.49; 95% CI, 1.8–6.7; \(P < 0.001 \)), and in-stent restenosis lesion treatment (HR, 2.83; 95% CI, 1.3–6.1; \(P = 0.008 \)) with a more evident negative impact in patients presenting with ST-elevation (HR, 4.09; 95% CI, 1.1–15.2; \(P = 0.035 \)) than in patients without ST-elevation (HR, 2.82; 95% CI, 1.1–7.5; \(P = 0.039 \)). This more evident impact is mainly because of the fact that these patients are at substantially at higher risk, but not because of an epidemiologically or nominally statistical significance of their product (ie, statistical interaction).

Table 2. Procedural Characteristics (Lesion Basis)

<table>
<thead>
<tr>
<th>Treated vessel</th>
<th>All Lesions, n=588</th>
<th>Lesions With DoCE, n=71</th>
<th>Lesions Without DoCE, n=517</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left main (%)</td>
<td>18 (3.1)</td>
<td>3 (4.2)</td>
<td>15 (2.9)</td>
<td>0.810</td>
</tr>
<tr>
<td>Left anterior descending artery (%)</td>
<td>311 (52.9)</td>
<td>41 (57.8)</td>
<td>270 (52.2)</td>
<td>0.455</td>
</tr>
<tr>
<td>Left circumflex artery (%)</td>
<td>110 (18.7)</td>
<td>15 (21.1)</td>
<td>95 (18.4)</td>
<td>0.693</td>
</tr>
<tr>
<td>Right coronary artery (%)</td>
<td>147 (25.0)</td>
<td>12 (16.9)</td>
<td>135 (26.1)</td>
<td>0.125</td>
</tr>
<tr>
<td>Graft conduit (%)</td>
<td>2 (0.3)</td>
<td>0 (0.0)</td>
<td>2 (0.4)</td>
<td>0.574</td>
</tr>
</tbody>
</table>

Lesion features

Ellis class B2/C (%)	430 (73.1)	47 (66.2)	383 (74.1)	1.000
Calcific lesion (%)	82 (13.9)	11 (15.5)	71 (13.7)	0.707
Ostial lesion (%)	24 (4.1)	6 (8.5)	18 (3.5)	0.027
Bifurcation lesion (%)	63 (10.7)	11 (15.5)	52 (10.1)	0.140
Angiographic ambiguous lesion (%)*	51 (8.7)	8 (11.3)	43 (8.3)	0.343
In-stent restenosis lesion (%)	20 (3.4)	6 (8.5)	14 (2.7)	0.025
Stent thrombosis (%)	22 (3.7)	4 (5.6)	18 (3.5)	0.501

Technical approach

Direct stenting (%)	161 (27.4)	19 (26.8)	142 (27.5)	1.000
Thrombectomy use (%)	147 (25.0)	15 (21.1)	132 (25.5)	0.556
Post-dilation (%)†	282 (48.0)	253 (48.9)	29 (40.8)	0.490
DES (%)	400 (68.0)	42 (59.2)	358 (69.3)	0.116
BMS (%)	161 (27.4)	28 (39.4)	133 (25.7)	0.022
BVS (%)	27 (4.6)	1 (1.4)	26 (5.0)	0.287
Overlapping stent (%)	121 (20.6)	12 (16.9)	109 (21.1)	0.440
Optimal angiographic result (%)	524 (89.1)	62 (87.3)	462 (89.4)	1.000
Stent diameter, mm†	3.0 (2.75–3.5)	3.0 (2.5–3.2)	3.0 (2.75–3.4)	0.035
Stent length, mm†	19 (15–28)	18 (15–24)	20 (16–28)	0.061
Max pressure during stent implantation, atm	16 (14–18)	16 (14–18)	16 (14–18)	0.898
Contrast dye, mL	240 (190–300)	225 (200–300)	240 (190–300)	0.898
Creatinine peak, mg/dL†	0.96 (0.8–1.2)	1.07 (0.9–1.3)	0.96 (0.8–1.1)	0.153

*BMS indicates bare metal stent; BVS, bioresorbable vascular scaffold; DES, drug-eluting stent; and DoCE, device-oriented cardiovascular events (including cardiac death, target vessel myocardial infarction, and target vessel revascularization).

*Defined as intermediate lesion with irregular contour and haziness.
†Expressed as median and quartiles.
The main findings of this study are the following: (1) OCT assessment of culprit treated lesion in ACS patients undergoing urgent/emergent PCI allowed the identification of quantitative morphological findings independently associated with outcome (HR, 3.69; 95% CI, 1.6–8.4; \(P=0.002\)), and (2) in the acute setting significant residual culprit lesion intrastent plaque/thrombus protrusion is observed in one third of cases and is significantly associated with DoCE occurrence (HR, 2.83; 95% CI, 1.3–6.1; \(P=0.008\)).

Table 3. OCT Findings (Lesion Basis)

<table>
<thead>
<tr>
<th>OCT features</th>
<th>All Lesions, n=588</th>
<th>Lesion With DoCE, n=71</th>
<th>Lesion Without DoCE, n=517</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-stent MLA, mm(^2)</td>
<td>6.1±2.2</td>
<td>5.4±2.0</td>
<td>6.2±2.2</td>
<td>0.007</td>
</tr>
<tr>
<td>Maximum in-stent lumen diameter, mm</td>
<td>3.0±0.6</td>
<td>2.9±0.5</td>
<td>3.1±0.6</td>
<td>0.014</td>
</tr>
<tr>
<td>Minimum in-stent lumen diameter, mm</td>
<td>2.4±0.5</td>
<td>2.3±0.5</td>
<td>2.5±0.5</td>
<td>0.023</td>
</tr>
<tr>
<td>Lumen symmetry (%)</td>
<td>1.3±0.2</td>
<td>1.3±0.2</td>
<td>1.3±0.2</td>
<td>0.546</td>
</tr>
<tr>
<td>Stent expansion (%)(^*)</td>
<td>84.9±22.4</td>
<td>82.1±23.1</td>
<td>85.3±22.3</td>
<td>0.268</td>
</tr>
<tr>
<td>Minimum stent area, mm(^2)</td>
<td>6.3±2.3</td>
<td>5.6±1.8</td>
<td>6.4±2.3</td>
<td>0.007</td>
</tr>
<tr>
<td>Atherothrombotic tissue at MLA, mm(^2)</td>
<td>0.5±0.6</td>
<td>0.4±0.5</td>
<td>0.5±0.6</td>
<td>0.548</td>
</tr>
<tr>
<td>Atherothrombotic tissue at MLA (%)</td>
<td>6.7±9.3</td>
<td>7.7±10.8</td>
<td>6.6±9.1</td>
<td>0.848</td>
</tr>
<tr>
<td>Mean reference lumen area, mm(^2)</td>
<td>7.3±2.7</td>
<td>6.5±2.6</td>
<td>7.4±2.8</td>
<td>0.008</td>
</tr>
<tr>
<td>Distal reference lumen area, mm(^2)</td>
<td>6.5±2.9</td>
<td>5.6±2.4</td>
<td>6.6±2.9</td>
<td>0.008</td>
</tr>
<tr>
<td>Proximal reference lumen area, mm(^2)</td>
<td>8.2±3.4</td>
<td>7.3±3.0</td>
<td>8.4±3.4</td>
<td>0.013</td>
</tr>
<tr>
<td>Malapposition thickness, mm</td>
<td>0.23±0.2</td>
<td>0.2±0.2</td>
<td>0.2±0.2</td>
<td>0.658</td>
</tr>
<tr>
<td>Malapposition length, mm</td>
<td>2.9±3.5</td>
<td>2.4±2.5</td>
<td>3.0±3.6</td>
<td>0.197</td>
</tr>
<tr>
<td>Intrastent atherothrombotic tissue prolapse, mm</td>
<td>0.42±0.3</td>
<td>0.5±0.3</td>
<td>0.4±0.3</td>
<td>0.019</td>
</tr>
<tr>
<td>Distal edge dissection length, mm</td>
<td>0.25±1.1</td>
<td>0.76±2.5</td>
<td>0.18±0.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Distal edge dissection width, mm</td>
<td>0.04±0.1</td>
<td>0.12±0.2</td>
<td>0.03±0.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Distal edge dissection arc (°)</td>
<td>8.0±29.3</td>
<td>26.0±60.8</td>
<td>5.5±20.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Proximal edge dissection length, mm</td>
<td>0.16±0.6</td>
<td>0.30±1.1</td>
<td>0.13±0.5</td>
<td>0.044</td>
</tr>
<tr>
<td>Proximal edge dissection width, mm</td>
<td>0.04±0.1</td>
<td>0.05±0.1</td>
<td>0.03±0.1</td>
<td>0.304</td>
</tr>
<tr>
<td>Proximal edge dissection arc (°)</td>
<td>5.6±18.3</td>
<td>9.9±24.9</td>
<td>5.0±17.1</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Suboptimal OCT criteria

In-stent MLA <4.5 mm\(^2\) (%)	130 (22.1)	30 (42.3)	100 (19.3)	<0.001
MSA <4.5 mm\(^2\) (%)	124 (21.1)	22 (31.0)	102 (19.7)	0.028
Residual stenosis (%)\(^†\)	143 (24.3)	22 (31.0)	121 (23.4)	0.187
Malapposition >200 \(\mu \) m (%)	282 (48.0)	35 (49.3)	247 (47.8)	0.899
Intrastent atherothrombotic tissue prolapse >500 \(\mu \) m (%)	189 (32.1)	26 (36.6)	163 (31.5)	0.009
Edge dissection >200 \(\mu \) m (%)	79 (13.4)	16 (22.5)	63 (12.2)	0.026
Distal dissection (%)	46 (7.8)	13 (18.3)	33 (6.4)	0.001
Proximal dissection (%)	41 (7.0)	7 (9.9)	34 (6.6)	0.464
Reference narrowing (%)\(^‡\)	45 (7.7)	24 (33.8)	21 (4.1)	<0.001
Distal narrowing (%)	37 (6.3)	18 (25.4)	19 (3.7)	<0.001
Proximal narrowing (%)	14 (2.4)	10 (14.1)	4 (0.8)	<0.001

DoCE indicates device-oriented cardiovascular events (including cardiac death, target vessel myocardial infarction, and target vessel revascularization); MLA, minimum lumen area; MSA, minimum stent area; and OCT, optical coherence tomography.

\(^*\)Defined as stent-to-mean reference lumen area.

\(^†\)Defined as in-stent minimum lumen area <70% of the average reference lumen area.

\(^‡\)Defined as reference lumen area <4.5 mm\(^2\) in the presence of significant residual plaque adjacent to stent endings.

and the individual effect of residual intrastent plaque/thrombus protrusion on outcome among all the prespecified OCT predictive parameters (see also Data Supplement Tables I and II).

Discussion

The main findings of this study are the following: (1) OCT assessment of culprit treated lesion in ACS patients
The OCT imaging technique with its high axial resolution has represented a new promising angle of view to address the adequacy of stent deployment and its enduring interaction with plaque/vessel components.3,27,28 Recent studies demonstrated the possibility to identify end-procedural stent parameters having negative consequence on clinical outcome and suggested the usefulness of an OCT-guided PCI strategy.6,7,12,23 The CLI-OPCI I study, comparing angiography alone versus angiographic plus OCT guidance for routine PCI, firstly supported the clinical use of OCT guidance and raised the question of proper management of observed OCT findings.6 An observational OCT study in patients undergoing fractional flow reserve and PCI (ILUMIEN I [Observational Study of Optical Coherence Tomography in Patients Undergoing Fractional Flow Reserve and Percutaneous Coronary Intervention]) showed how OCT findings influenced physician decision-making especially in more complex coronary lesions; in particular, malapposition, edge dissection, and stent underexpansion that are not apparent on angiography were the main reasons driving additional reaction by operators.29 The Massachusetts General Hospital OCT Registry showed 900 stable and unstable lesions, a frequent incidence of abnormal post-stent OCT findings, identifying irregular intrastent protrusion.

Table 4. Clinical Outcomes (Patient Basis)

<table>
<thead>
<tr>
<th></th>
<th>All Patients, 507</th>
<th>Patients With OCT Suboptimal Stent Deployment*, 280</th>
<th>Patients Without OCT Suboptimal Stent Deployment, 227</th>
<th>HR (CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoCE (%)</td>
<td>61 (12.0)</td>
<td>50 (17.9)</td>
<td>11 (4.8)</td>
<td>4.12 (2.1–7.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiac death (%)</td>
<td>14 (2.8)</td>
<td>12 (4.3)</td>
<td>2 (0.9)</td>
<td>5.42 (1.2–24.4)</td>
<td>0.028</td>
</tr>
<tr>
<td>Myocardial infarction (%)</td>
<td>42 (8.3)</td>
<td>33 (11.8)</td>
<td>9 (4.0)</td>
<td>3.27 (1.6–6.9)</td>
<td>0.002</td>
</tr>
<tr>
<td>Periprocedural</td>
<td>12 (2.4)</td>
<td>8 (2.9)</td>
<td>4 (1.8)</td>
<td>1.69 (0.5–5.6)</td>
<td>0.671</td>
</tr>
<tr>
<td>During follow-up</td>
<td>30 (6.9)</td>
<td>25 (8.9)</td>
<td>5 (2.2)</td>
<td>4.57 (1.7–12.0)</td>
<td>0.002</td>
</tr>
<tr>
<td>Target lesion revascularization (%)</td>
<td>37 (7.3)</td>
<td>31 (11.1)</td>
<td>6 (2.6)</td>
<td>4.76 (2.0–11.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Stent thrombosis (%)</td>
<td>25 (4.9)</td>
<td>21 (7.5)</td>
<td>4 (1.8)</td>
<td>4.65 (1.6–13.6)</td>
<td>0.005</td>
</tr>
<tr>
<td>Acute</td>
<td>5 (1.0)</td>
<td>3 (1.1)</td>
<td>2 (0.8)</td>
<td>1.29 (0.2–7.7)</td>
<td>0.782</td>
</tr>
<tr>
<td>Subacute</td>
<td>16 (3.1)</td>
<td>14 (5.0)</td>
<td>1 (0.4)</td>
<td>11.81 (1.6–89.8)</td>
<td>0.017</td>
</tr>
<tr>
<td>Late</td>
<td>2 (0.4)</td>
<td>3 (1.1)</td>
<td>0 (0.0)</td>
<td>0.00 (0.0–0.0)</td>
<td>0.257</td>
</tr>
<tr>
<td>Very late</td>
<td>2 (0.4)</td>
<td>1 (0.3)</td>
<td>1 (0.4)</td>
<td>1.33 (0.8–22.5)</td>
<td>0.843</td>
</tr>
<tr>
<td>Days of follow-up†</td>
<td>345 (219–540)</td>
<td>342 (205–540)</td>
<td>352 (230–540)</td>
<td>0.202</td>
<td></td>
</tr>
</tbody>
</table>

CI indicates confidence interval; DoCE, hierarchical device-oriented cardiovascular events (cardiac death, target vessel myocardial infarction, and target lesion revascularization); HR, hazard ratio; and OCT, optical coherence tomography.

*Either in-stent minimum lumen area <4.5 mm², intrastent atherothrombotic tissue prolapse >500 µm, dissection >200 µm at the distal stent edge, distal or proximal reference narrowing.

†Expressed as median and quartiles.

Stent malapposition (SM)
0.250.2% vs. 0.2±0.2mm², p=0.658
SM =0.2mm 49.3% vs. 47.8%, p=0.899
HR 1.08 (CI 95% 0.7–1.7, p=0.734)

In-stent Minimum Lumen Area (MLA)
5.4±2.0mm² vs. 6.2±2.2mm², p=0.007
MLA <4.5mm² 42.3% vs. 19.3%, p=0.001
HR 2.72 (CI 95% 1.7–4.4, p=0.001)

Minimum stent area (MSA)
MSA 5.6±1.8mm² vs. 6.4±2.3mm², p=0.007
MSA <4.5mm² 31.0% vs. 19.7%, p=0.026
HR 1.87 (CI 95% 1.1–3.1, p=0.017)

Residual stenosis (RS)
17.5±23.1% vs. 14.7±22.3mm², p=0.268
MLA <70% 31.0% vs. 23.4%, p=0.187
HR 1.28 (CI 95% 0.8–2.1, p=0.335)

Plaque-thrombus prolapse (PTP)
0.5±0.3% vs. 0.4±0.3mm², p=0.019
PTP >500µm 36.6% vs. 31.5%, p=0.009
HR 2.35 (CI 95% 1.4–4.1, p=0.002)

Reference vessel narrowing (RVN)
6.5±12.5mm² vs. 7.4±2.8mm², p=0.008
RVN <4.5mm² 33.8% vs. 4.1%, p<0.001
HR 7.54 (CI 95% 4.6–12.5, p<0.001)

Stent edge dissection (SED)
0.12±0.2mm² vs. 0.03±0.1mm², p<0.001
SED >200µm 22.5% vs. 12.2%, p=0.026
HR 2.21 (CI 95% 1.3–3.9, p=0.005)

Figure 2. Optical coherence tomographic (OCT) criteria applied to address suboptimal OCT stent deployment with relative incidence in patient without and with any adverse event during follow-up. CI indicates confidence interval; and HR, hazard ratio.
and small MSA as important predictors of adverse events, primarily target lesion revascularization. Finally, the CLI-OPCI II study, including ≈1000 lesions, helped to better define the quantitative threshold of suboptimal OCT stent implantation parameters: in-stent MLA <4.5 mm², dissection >200 µm at the distal stent edge, and reference lumen area <4.5 mm² in the presence of residual significant plaque at stent edges resulted as independent predictors of worse outcome at follow-up.

Use of OCT Parameters in an Unstable Setting

On the basis of the previous evidences, in this study, we sought to evaluate the clinical impact of suboptimal OCT stent implantation in an unexplored clinical environment: culprit lesion(s) of ACS patients. We addressed the predictive accuracy of all the quantitative OCT parameters identified in the CLI-OPCI II study in this specific population. In particular, we focused our attention on the residual intrastent plaque/thrombus protrusion, which is an indistinct mesh of thrombus, lipid necrotic core debris protrusion, and fragmented plaque.

According to the prespecified OCT definitions, at least 1 criterion of clinically relevant suboptimal stent implantation was found in about half of patients and was associated with an associated increased risk of DoCE during follow-up (17.9% versus 4.8%; HR, 4.12; 95% CI, 2.1–7.9; P<0.001). When compared with the CLI-OPCI II study population that also included elective patients with stable coronary artery disease, prevalence of the OCT-defined suboptimal stent deployment was significantly higher in ACS patients (55.2% versus 31.0%; P<0.01), confirming that acute patients were at increased risk of suboptimal PCI results.

Lesions associated with DoCE during follow-up revealed a significantly higher prevalence of suboptimal OCT-detected stenting parameters. In particular, in-stent MLA <4.5 mm², MSA <4.5 mm², intrastent atherothrombotic tissue prolapse >500 µm, dissection width >200 µm at the distal stent edge, and reference lumen area <4.5 mm² in the presence of residual significant plaque at stent edges were significantly more frequent in cases of DoCE occurrence during follow-up.

Notably, in the acute setting, stent malapposition (>200 µm) was not associated to a worse outcome; indeed, DoCE rate was very similar in patients with or without OCT-detected acute stent malapposition (12.8% versus 11.4%; P=0.730). This result confirmed the previous intravascular ultrasound
and OCT findings that failed to relate acute stent–vessel wall malapposition with clinical outcome.12–30–32 Similarly, the presence of residual stenosis (in-stent MLA > 30\% of the average reference lumen area) failed to predict outcome confirming that, also in acute setting, the absolute in-stent MLA and MSA are more predictive than stenosis expressed as percentage of stent-to-mean reference lumen area.5,33–36

The Role of Residual Intrastent Plaque/Thrombus Protrusion

The presence of residual plaque/thrombus prolapse was a common finding, detectable in most of the culprit lesions of STEMI patients regardless of the adopted PCI strategy.11,37 Previous angiographic studies related intrastent residual thrombus to an increased risk of peri-procedural MI (ie, distal embolization) and stent thrombosis (eg, inadequate vessel healing).8–10 In intravascular ultrasound studies, the intrastent tissue prolapse has been associated with a worse prognosis in the setting of PCI for acute MI.38–40 These findings were partially corroborated by preliminary OCT data that were able to relate residual intrastent plaque/thrombus prolapse to surrogate clinical end points such as coronary flow, myocardial reperfusion,37 and neointimal volume.41 The Massachusetts General Hospital OCT Registry demonstrated a correlation between intrastent plaque protrusion (>100 \(\mu \)m in 53\% of lesions) and the following risk or target lesion revascularization in the first year of follow-up; thrombus prolapse (defined as a mass with diameter >250 \(\mu \)m attached to the luminal surface, stent strut, or floating within the lumen) was observed in 39\% of lesions but was not predictive of worse outcome.12 The choice of arbitrary cut-offs, the qualitative interpretation of plaque protrusion, and the coexistence of stable and acute patients might partially explain these results.

Thus, because of the lack of solid end points and specific studies, the true clinical impact of residual intrastent plaque/thrombus protrusion in acute patients remained undefined. In the CLI-OPCI II study,7 we explored the clinical role of intrastent atherothrombotic tissue prolapse (applying a 500 \(\mu \)m thickness cut-off) in a mixed population which included both acute and stable patients; in this study, intrastent plaque/thrombus protrusion was not an independent predictor of outcome (HR, 1.21; 95\% CI, 0.7–1.9; \(P = 0.45 \)). On the other hand, in this study, we proved a correlation between residual intrastent plaque/thrombus protrusion and clinical outcome for patients with ACS. In fact, at the multivariable Cox hazard analysis, residual intrastent plaque/thrombus protrusion >500 \(\mu \)m was a 3-fold independent DoCE predictor (HR, 2.83; 95\% CI, 1.3–6.1; \(P = 0.008 \); Figure 4). The explanation for the discrepancy between this study and the overall CLI-OPCI II registry likely reflected the differences in tissue composition (ie, thrombus or plaque fragments) because the prevalence of intrastent tissue prolapse was similar (32.1\% versus 29.4\%). The higher intrastent thrombotic burden could also explain the significant difference of subacute ST stent thrombosis observed, perhaps limiting the external validity of these results. Notwithstanding, the OCT assessment of the lesions and the effective intraprocedural OCT use by operators, as well as the lack of angiographic/OCT follow-up, represented other study limitations. Third, OCT could not reliably differentiate thrombus and plaque intrastent protrusion; it is likely that these 2 components play a different role in the plaque/vessel healing. Indeed, the incidence of tissue protrusion in acute patients is relatively frequent, it spontaneously resolves in most of cases suggesting a predominance of thrombotic material.43

Limitations

The nonrandomized, retrospective design represented the main limitation of this study, including patients uniquely pooled by the arbitrary intraprocedural OCT use. Thus, these patients represented a selected PCI subgroup not necessarily representative of general population. This could partially explain the unusual rate of subacute ST stent thrombosis observed, perhaps limiting the external validity of these results. Notwithstanding evident clinical (ie, baseline risk profile), procedural (ie, bare metal stent versus drug-eluting stents use), and medical (eg, dual antiplatelet therapy protocol) differences among patients, the presence of nonoptimal OCT criteria for stent deployment was confirmed as an independent predictor of DoCE in the multivariable Cox hazard analysis. The absence of data on baseline OCT assessment of the lesions and the effective intraprocedural OCT use by operators, as well as the lack of angiographic/OCT follow-up, represented other study limitations. Third, OCT could not reliably differentiate thrombus and plaque intrastent protrusion; it is likely that these 2 components play a different role in the plaque/vessel healing. Indeed, although the incidence of tissue protrusion in acute patients is relatively frequent, it spontaneously resolves in most of cases suggesting a predominance of thrombotic material.
other hand, the presence of a persistent atheroma protrusion could negatively affect the neointimal hyperplasia formation. Long-term OCT assessment is required to further investigate the evolution and the clinical impact of plaque/thrombus intrastent protrusion in acute setting.

Conclusions
In ACS patients, the presence of OCT-defined suboptimal stent deployment was an independent adverse clinical outcome predictor. Unlike previous findings in the stable setting, significant residual intrastent plaque/thrombus protrusion after PCI was associated with an increased risk of DoCE recurrence at follow-up in ACS patients.

Sources of Funding
This work was supported by a grant from the Centro per la Lotta Contro l’Infarto—Fondazione Onlus, Rome, Italy.

Disclosures
Dr Prati has served as a consultant for St. Jude Medical. Dr Burzotta has received speaker’s fees from Medtronic, Abiomed, and St. Jude. The other authors report no conflicts.

References
Consortium. Clinical end points in coronary stent trials: a case for
GA, Steg PG, Morel MA, Mauri L, Vranckx P, McFadden E, Lansky
doi: 10.1161/CIRCULATIONAHA.107.187397.
Circulation
WHF Task Force for the Redefinition of Myocardial Infarction. Universal
WB, Goff D, Tubaro M, Dudek D, Al-Attar N; Joint ESC/ACCF/AHA/
A, Camm AJ, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-
Pais P, Mendis S, Zhu JR, Wallentin LC, Fernández-Avilés F, Fox KM,
EM, Simoons ML, Poole-Wilson PA, Gurfinkel EP, Lopez-Sendon JL,
HA, Newby LK, Ravkilde J, Chaitman B, Clemmensen PM, Dellborg
CIRCULATIONAHA.114.014704.
Circulation
versus PCI Alone) trial.
Eur Heart J
optical coherence tomography sub-study of the TOTAL (Thrombectomy
during percutaneous coronary angioplasty in the current era (the Mayo
White CJ, Ramee SR, Collins TJ, Escobar AE, Karsan A, Shaw D, Jain
SP, Bass T, Heuser RR, Teirstein PS, Bonan R, Walter PD, Smalling RW.
Coronary thrombosis increase PTCA risk. Angioscopy as a clinical tool.
Prati F, Cera M, Ramazzotti V, Imola F, Guadice R, Guadice M, Prorris
SD, Albertucci M. From bench to bedside: a novel technique of acquiring
Thygesen K, Alpert JS, White HD, Jaffe AS, Apple FS, Galvani M, Katus
HA, Newby LK, Ravkilde J, Chaitman B, Clemmensen PM, Dellborg
der Wall EE, Bassand JP, Wijns W, Ferguson TB, Steg PG, Uretsky BF,
Williams DO, Armstrong PW, Antman EM, Fox KA, Hamm CW, Ohman
EM, Simoons ML, Pfeile-Wilson PA, Gurtinkel EP, Lopez-Sendon JL,
Pais P, Mendis S, Zhu JR, Wallentin LC, Fernández-Avilés F, Fox KM,
Parkhomenko AN, Priori SG, Tendera M, Voipio-Pulkki LM, Vahanian
A, Camm AJ, De Caterina R, Dean V, Dickstein K, Filippos G, Funk-
Brentano C, Hellemans I, Kristensen SD, McGregor K, Schectman U, Silber
R, Morrow D, Lim M, Martinez-Rios MA, Steinbuhl S, Levine GN, Ghiber
W, Gregoir D, Dohmi M, Duket D, Al-Atriss J, Joint ESC/ACCF/AHA/WHF
Task Force for the Redefinition of Myocardial Infarction. Universal
doi: 10.1161/CIRCULATIONAHA.107.187397.
Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, van Es
GA, Steg PG, Morel MA, Mauri L, Vranckx P, McFadden E, Lansky
A, Hamon M, Krakoff MW, Serruys PW; Academic Research
Consortium. Clinical end points in coronary stent trials: a case for
CIRCULATIONAHA.106.685513.
19. Popma JJ, Bashore TD. Qualitative and quantitative angiography.
20. Tearney GJ, Regar E, Akasaka T, Adriaensen T, Barlis P, Bezerra HG,
Bouma B, Bruinting N, Cho JM, Chowdhary S, Costa MA, de Silva R,
Dijkstra J, Di Mario C, Dudek D, Dudek D, Falk E, Feldk E, Feldman
MD, Fitzgerald P, Garcia-Garcia HM, Garcia H, Gonzalez N, Granada
GF, Gugliumni, Holmes HR, Honda Y, Ikeno F, Kawasaki M, Kochman
K, Kolowowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G,
Lee DP, Leon MB, Machara A, Manfrini O, Mintz GS, Mizuno K, Morel
MA, Nakadia S, Okura H, Otake H, Pietrasik A, Prati F, Räber L, Radu
MD, Rieber J, Rig M, Rollins A, Rosenberg M, Sirvia V, Serruys PW,
Shimada K, Shintke T, Shintke J, Siegel E, Sonoda S, Sonoda S, Suter M,
Takarada S, Tanaka A, Terashima M, Thim T, Troels T, Uemura S, Ughi
GJ, van Beusekom HM, van der Steen AF, van ES GA, van ES GA, van
Working Group for Intravascular Optical Coherence Tomography (JWG-
IVOCT). Consensus standards for acquisition, measurement, and report-
ing of intravascular optical coherence tomography studies: a report from
the International Working Group for Intravascular Optical Coherence
Tomography Standardization and Validation. J Am Coll Cardiol.
21. Tanigawa J, Barlis P, Di Mario C. Intravascular optical coherence
tomography: optimisation of acquisition and quantitative assessment of stent
22. Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek
D, Thuesen L, Smits PC, Chevalier B, Mclean D, Koolen J, Windecker
S, Whitbourn R, Meredith I, Dorange C, Veldhof S, Miquel-Hebert
K, Rapoza R, Garcia-Garcia HM. Evaluation of the second genera-
tion of a bioreabsorbable everolimus drug-eluting vascular scaffold for
management of de novo coronary artery stenosis at six months clinical
CIRCULATIONAHA.110.970772.
23. Kume T, Akasaka T, Kawamoto T, Ogawara Y, Watanabe N, Toyota
E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K. Assessment of coro-
ary arterial thrombus by optical coherence tomography. Am J Cardiol.
Press; 1975.
Topol EJ, Bulla TM. Coronary morphologic and clinical determinants of
procedural outcome with angioplasty for multivessel coronary disease.
Implications for patient selection. Multivessel Angioplasty Prognosis
27. Suter MJ, Nadkarni SK, Weisz G, Tanaka A, Jaffer FA, Bouma BE,
Tearney GJ. Intravascular optical imaging technology for investigating the
Jimenez-Quevedo P, Battuelos C, Fernandez-Ortiz A, Fernandez-Ortiz A,
Garcia E, Hernandez-Antolín R, Macaya C. Morphometric assessment of
 coronary stenosis relevance with optical coherence tomography: a com-
parison with fractional flow reserve and intravascular ultrasound. J Am
E, Akasaka T, Bezerra H, Holmes D. Optical coherence tomography im-
ageing during percutaneous coronary intervention impacts physician deci-
F, Paoletti G, Biondi-Zoccai G, Tamburino C, Prati F. Optical coherence
tomography guided in-stent thrombus removal in patients with acute
10.1007/s10554-013-0191-0.
31. Steinberg DH, Mintz GS, Sandinov L, Yu A, Ellis SG, Grube E, Dawkins
KD, Ormiston T, Marca M, Stone GW, Weissman NJ. Long-term impact
of routinely detected early and late incomplete stent apposition: an inte-
grated intravascular ultrasound analysis of the TAXUS IV, V, and VI
Prati et al The CLI-OPCI ACS Substudy

Clinical Impact of Suboptimal Stenting and Residual Intrastent Plaque/Thrombus Protrusion in Patients With Acute Coronary Syndrome: The CLI-OPCI ACS Substudy (Centro per la Lotta Contro L’Infarto-Optimization of Percutaneous Coronary Intervention in Acute Coronary Syndrome)

Francesco Prati, Enrico Romagnoli, Laura Gatto, Alessio La Manna, Francesco Burzotta, Ugo Limbruno, Francesco Versaci, Franco Fabbrocchi, Alessandro Di Giorgio, Valeria Marco, Vito Ramazzotti, Luca Di Vito, Carlo Trani, Italo Porto, Alberto Boi, Luigi Tavazzi and Gary S. Mintz

Circ Cardiovasc Interv. 2016;9:
doi: 10.1161/CIRCINTERVENTIONS.115.003726

Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/9/12/e003726

Data Supplement (unedited) at:
http://circinterventions.ahajournals.org/content/suppl/2016/12/09/CIRCINTERVENTIONS.115.003726.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Interventions can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Interventions is online at:
http://circinterventions.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Supplemental Table 1. Clinical outcomes according to presence of intra-stent tissue prolapse >500µm

<table>
<thead>
<tr>
<th>Outcome</th>
<th>HR</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoCE (%)</td>
<td>2.51</td>
<td>1.4-4.6</td>
<td>0.003</td>
</tr>
<tr>
<td>Cardiac death (%)</td>
<td>3.74</td>
<td>1.2-11.3</td>
<td>0.019</td>
</tr>
<tr>
<td>Myocardial infarction (%)</td>
<td>2.58</td>
<td>0.6-6.2</td>
<td>0.022</td>
</tr>
<tr>
<td>Peri-procedural</td>
<td>1.99</td>
<td>0.6-6.2</td>
<td>0.233</td>
</tr>
<tr>
<td>During follow-up</td>
<td>3.38</td>
<td>1.0-10.9</td>
<td>0.042</td>
</tr>
<tr>
<td>Target lesion revascularization (%)</td>
<td>1.66</td>
<td>0.7-4.2</td>
<td>0.282</td>
</tr>
<tr>
<td>Stent thrombosis (%)</td>
<td>1.65</td>
<td>0.4-7.5</td>
<td>0.518</td>
</tr>
</tbody>
</table>

DoCE= hierarchical device-oriented cardiovascular events (including cardiac death, target-vessel myocardial infarction and target vessel revascularization).

Supplemental Table 2. Predictive value of OCT criteria

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Unadjusted HR</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-stent minimum lumen area <4.5 mm²</td>
<td>2.72 (1.7-4.4)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Minimum stent area <4.5 mm²</td>
<td>1.87 (1.1-3.1)</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Distal dissection >200µm</td>
<td>3.84 (2.1-7.1)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Proximal dissection >200µm</td>
<td>1.44 (0.7-3.3)</td>
<td>0.358</td>
<td></td>
</tr>
<tr>
<td>In-stent lumen underexpansion *</td>
<td>1.28 (0.8-2.1)</td>
<td>0.335</td>
<td></td>
</tr>
<tr>
<td>Malapposition >200µm</td>
<td>1.08 (0.7-1.7)</td>
<td>0.734</td>
<td></td>
</tr>
<tr>
<td>Intrastent plaque/thrombus protrusion >500µm</td>
<td>2.35 (1.4-4.1)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Distal reference narrowing†</td>
<td>6.07 (3.5-10.5)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Proximal reference narrowing†</td>
<td>8.50 (4.3-16.8)</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Adjusted HR</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-stent minimum lumen area <4.5 mm²</td>
<td>3.92 (1.5-9.9)</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Minimum stent area <4.5 mm²</td>
<td>0.42 (0.2-1.2)</td>
<td>0.089</td>
<td></td>
</tr>
<tr>
<td>Distal dissection >200µm</td>
<td>1.58 (1.1-4.2)</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>Proximal dissection >200µm</td>
<td>1.37 (0.4-4.7)</td>
<td>0.619</td>
<td></td>
</tr>
<tr>
<td>In-stent lumen underexpansion *</td>
<td>1.06 (0.5-2.2)</td>
<td>0.872</td>
<td></td>
</tr>
<tr>
<td>Malapposition >200µm</td>
<td>0.84 (0.5-1.5)</td>
<td>0.573</td>
<td></td>
</tr>
<tr>
<td>Intrastent plaque/thrombus protrusion >500µm</td>
<td>2.05 (1.2-3.7)</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>Distal reference narrowing†</td>
<td>2.56 (1.1-6.2)</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>Proximal reference narrowing†</td>
<td>4.07 (1.3-12.9)</td>
<td>0.017</td>
<td></td>
</tr>
</tbody>
</table>

* Defined as in-stent minimum lumen area <70% of the average reference lumen area
† Defined as reference lumen area <4.5mm² in presence of significant plaque