The goal of research into the in vivo detection of vulnerable plaques is to provide a clinician with a diagnostic tool that identifies vulnerable plaques prospectively to prevent acute events. This tool must have both a high positive predictive value and a high negative predictive value in the clinical setting (not just against histopathology) and cannot require specific expertise or core-laboratory analysis to determine whether a plaque should be treated pre-emptively—in other words, a yes/no, red light/green light, treat/don’t treat tool. Optical coherence tomography (OCT) has been proposed to be that tool. OCT criteria for a thin-cap fibroatheroma (TCFA), the most common type of vulnerable plaque, include the presence of lipid with an overlying, macrophage-containing thin fibrous cap.

Despite these criteria, OCT is often not perfect. OCT may sometimes be radiographically indistinguishable from histopathology. OCT is currently a laboratory tool that requires expertise and calibrating filters. OCT criteria were not always met in some studies, and OCT may not detect some plaques. OCT may also not detect plaques in some regions of the coronary tree. OCT is currently far from a perfect tool to detect plaques prospectively to prevent acute events. This tool must have both a high positive predictive value and a high negative predictive value in the clinical setting (not just against histopathology) and cannot require specific expertise or core-laboratory analysis to determine whether a plaque should be treated pre-emptively—in other words, a yes/no, red light/green light, treat/don’t treat tool. Optical coherence tomography (OCT) has been proposed to be that tool. OCT criteria for a thin-cap fibroatheroma (TCFA), the most common type of vulnerable plaque, include the presence of lipid with an overlying, macrophage-containing thin fibrous cap.

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Cardiovascular Research Foundation, New York, NY.

Correspondence to Gary S. Mintz, MD, Cardiovascular Research Foundation, 1700 Broadway, 9th Floor, New York, NY 10019. E-mail gmintz@crf.org

Circ Cardiovasc Interv is available at http://circinterventions.ahajournals.org DOI: 10.1161/CIRCINTERVENTIONS.116.004144
reasons for limitations are important, at some point, it is necessary to move beyond correlations to clinical outcomes studies—as first as prospective registries, but ultimately as multicenter outcomes trials in which events are actually reduced. Imaging findings that reliably predict (or exclude) events are more important than studies showing that one or another technology (or any combination of technologies) correlate (or do not correlate) with histopathology with a greater (or lesser) degree of accuracy. This has been done in PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree),31 VIVA (VH-IVUS in Vulnerable Atherosclerosis),32 and ATEROREMO-IVUS (European Collaborative Project on Inflammation and Vascular Wall Remodeling in Atherosclerosis-IVUS)33 despite the highly critical animal study by Thim et al34 questioning the validity of VH-IVUS; and it is being replicated in PROSPECT-II that includes both a prospective registry and an embedded, randomized outcomes substudy called PROSPECT-Absorb.

Disclosures

Dr Mintz is a consultant for and receives honoraria from Boston Scientific, Volcano, Infraredx, ACIST, and St Jude. The Cardiovascular Research Foundation receives fellowship or research support from Boston Scientific, Volcano, Infraredx, and St Jude.

References

SW, Mintz GS, Park SJ. Multimodality imaging of attenuated plaque using
grayscale and virtual histology intravascular ultrasound and optical co-
herent tomography [published online ahead of print December 15, 2014].
vander de Steen AF, Wilder MA, Muller JE, Regar E. First use in patients
of a combined near-infra-red spectroscopy and intra-vascular ultra-
sound catheter to identify composition and structure of coronary plaque.
A dual-modality probe utilizing intravascular ultrasound and optical co-
herence tomography for intravascular imaging applications. IEEE Trans
24. Li BH, Leung AS, Soong A, Munding CE, Lee H, Thind AS, Munce NR,
Wright GA, Rowse J, Yang VX, Strauss BH, Foster FS, Courtney BK. Hybrid
intravascular ultrasound and optical coherence tomography cath-
25. Yin J, Li X, Jing J, Li J, Mukai D, Mahon S, Edris A, Hoang K, Shung KK,
Brenner M, Narula J, Zhou Q, Chen Z. Novel combined miniature optical
coregistered three-dimensional intracoronary imaging with
26. Li J, Ma T, Jing J, Zhang J, Patel PM, Kirsh Shang K, Zhou Q, Chen Z.
Miniature optical coherence tomography-ultrasound probe for auto-
matically coregistered three-dimensional intracoronary imaging with
Hagensen MK, Wallace-Bradley D, Granada JF, Kaluza GL,
27. Li J, Li X, Mohar D, Raney A, Jing J, Zhang J, Johnston A, Liang S,
Ma T, Shung KK, Mahon S, Brenner M, Narula J, Zhou Q, Patel PM,
and virtual ultrasound catheter to identify composition and structure of coronary plaque.
Jaffer FA, Tearney GJ. Dual modality intravascular optical coherence
tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a
fully automated algorithm for the distance-calibration of NIRF signal
29. Ughi GJ, Wang H, Gerbau E, Gardecki JA, Fard AM, Hamidi E, Vacas-
Jacques P, Rosenberg M, Jaffer FA, Tearney GJ. Clinical characterization
of coronary atherosclerosis with dual-modality OCT and near-infrared au-
thofluorescence imaging [published online ahead of print March 3, 2016].
30. Bourantas CV, Jaffer FA, Gijzen FJ, van Soest G, Madden SP, Courtney
BK, Fard AM, Tenekecioglu E, Zeng Y, van der Steen AF, Emelianov S,
Muller J, Stone PH, Marcu L, Tearney GJ, Serruys PW. Hybrid intravas-
cular imaging: recent advances, technical considerations, and current ap-
plications in the study of plaque pathophysiology [published online ahead of
31. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS,
Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B,
White R, Zhang Z, Serruys PW; PROSPECT Investigators. A prospec-
32. Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem
CG, Schofield PM, Braganza D, Clarke SC, Ray KK, West NE, Bennett
MR. Association between IVUS findings and adverse outcomes in pa-
tients with coronary artery disease: the VIVA (VH-IVUS in vulnerable
atherosclerosis) study. JACC Cardiovasc Imaging. 2011;4:894–901. doi:
10.1016/j.jcmg.2011.05.005.
33. Cheng JM, Garcia-Garcia HM, de Boer SP, Kardys I, Hoo JH, Akkerhuis
KM, Oemrawsingh RM, van Dornburg RT, Ligthart J, Witberg KT, Regar
E, Serruys PW, van Geuns RJ, Boersma E. In vivo detection of high-risk
coronary plaques by radiofrequency intravascular ultrasound and cardio-
vascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart
34. Thimm T, Hagensen MK, Wallace-Bradley D, Granada JF, Kaluza GL,
Drouet L, Paaske WP, Bøtker E, Falk E. Unreliable assessment of ne-
rotic core by virtual histology intravascular ultrasound in porcine coro-
10.1161/CIRCIMAGING.109.919357.

Key Words: Editorials atherosclerotic plaques optical coherence
tomography
Understanding Why and When Optical Coherence Tomography Does Not Detect Vulnerable Plaques: Is It Important?
Gary S. Mintz

Circ Cardiovasc Interv. 2016;9:
doi: 10.1161/CIRCINTERVENTIONS.116.004144
Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circinterventions.ahajournals.org/content/9/7/e004144