Primary Percutaneous Coronary Intervention as a National Reperfusion Strategy in Patients With ST-Segment Elevation Myocardial Infarction

Christian J. Terkelsen, MD, PhD; Lisette O. Jensen, MD, DmSc, PhD; Hans H. Tilsted, MD; Per Thaysen, MD, DmSc; Jan Ravkilde, MD, DmSc; Søren P. Johnsen, MD, PhD; Sven Trautner, MD; Henning R. Andersen, MD, DmSc; Leif Thuesen, MD, DmSc; Jens F. Lassen, MD, PhD

Background—In Denmark, primary percutaneous coronary intervention (PPCI) was chosen as a national reperfusion strategy for patients with ST-segment elevation myocardial infarction in 2003. This study describes the temporal implementation of PPCI in Western Denmark, the gradual introduction of field triage for PPCI (patients rerouted from the scene of the event directly to the invasive center), and the associated outcome.

Methods and Results—The study population comprised 9514 patients treated with PPCI from 1999 to 2009 with symptom duration ≤12 hours and either a delay from the emergency medical service (EMS) call to PPCI (healthcare system delay) of ≤6 hours or as self-presenters. The median follow-up time was 3.7 years. The number of patients treated with PPCI increased from 190 in 1999 to 1212 in 2009. Among patients transported by the EMS from the scene of the event, the proportion who were field triaged directly to a PCI center increased from 33% (34/103) to 72% (616/851, P<0.001). Patients who were field triaged had lower long-term mortality, with adjusted hazard ratios (95% CI) of 1.26 (1.12–1.43) among patients transported by the EMS to a local hospital and then transferred, 1.28 (1.10–1.49) among patients self-presenting at a local hospital and then transferred, and 1.37 (1.18–1.58) among patients self-presenting at a PCI center.

Conclusions—A reperfusion strategy with PPCI only for patients with ST-segment elevation myocardial infarction was successfully implemented in Western Denmark, and the majority of patients transported by the EMS are now triaged directly to the PPCI centers. This strategy is associated with lower mortality. (Circ Cardiovasc Interv. 2011;4:00-00.)

Key Words: angioplasty ▪ death ▪ myocardial infarction

In 2003, primary percutaneous coronary intervention (PPCI) was chosen as a national reperfusion strategy for patients with ST-segment elevation myocardial infarction (STEMI) in Denmark.1 To facilitate triage of patients directly to the PPCI centers, a prehospital diagnostic program was launched. The purpose of the present study was to describe the gradual implementation of PPCI from 1999 until 2009, the temporal change in triage of patients directly to PPCI centers, and the associated clinical outcome.

Methods

Geographical Area
The study was conducted in Western Denmark, which has a population of 3 034 740, corresponding to 55% of the Danish population. The region has 3 PPCI centers located in the 3 largest cities (Aalborg, Aarhus, and Odense). The cities have populations of 123 432, 242 914, and 166 305, respectively, and the total catchment areas of the 3 PPCI centers are 580 515, 1 253 998, and 1 200 227, respectively, when including rural areas. The region has 22 somatic hospitals without PPCI facilities. All PPCI centers offer 24-hours/day, 7-days/week services. The distance from north to south is 400 km and from east to west, 190 km. The longest transport distance to a PPCI center is 180 km. One major emergency medical service (EMS) provider (Falck A/S; Copenhagen, Denmark) covers 90% of all EMS calls in Western Denmark.

Design
This historical follow-up study was based on public medical databases covering the entire population of Western Denmark. The Danish National Health Service provides tax-supported free health care for all inhabitants, guaranteeing free access to EMS services, treatment by general practitioners, and free hospital treatment. Unambiguous, individual-level linkage between the databases used in this study was possible through the civil registration number, which is a unique, 10-digit personal identification number assigned to every Danish citizen at birth.2,3

Received February 19, 2011; accepted September 13, 2011. From the Department of Cardiology (C.J.T., H.R.A., L.T., J.F.L.) and Department of Clinical Epidemiology (S.P.J.), Aarhus University Hospital, Aarhus, Denmark; Department of Cardiology, Odense University Hospital, Odense, Denmark (L.O.J., P.T.); Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark (H.H.T., J.R.); and Falck Emergency Medical Service, The Falck House, Copenhagen, Denmark (H.R.A.). Correspondence to Christian Juhl Terkelsen, MD, PhD, Department of Cardiology B, Aarhus University Hospital, Skejby, Brendstrupgaardvej 100, DK-8200 Aarhus N, Denmark. E-mail Christian_Juhl_Terkelsen@hotmail.com © 2011 American Heart Association, Inc. Circ Cardiovasc Interv is available at http://circinterventions.ahajournals.org DOI: 10.1161/CIRCINTERVENTIONS.111.962787
WHAT IS KNOWN

• Primary percutaneous coronary intervention (PPCI) is recommended as the preferred reperfusion strategy in patients with ST-segment elevation myocardial infarction if initiated in a timely manner.

WHAT THE STUDY ADDS

• Successful implementation of PPCI is the only reperfusion strategy used in Denmark.
• When combining prehospital diagnosis with field triage, the majority of patients with ST-segment elevation myocardial infarction are admitted directly to the invasive center for PPCI.

Patients and Procedures

The study population consisted of patients with STEMI or presumed bundle branch block myocardial infarction admitted for PPCI in Western Denmark between January 1, 1999, and December 31, 2009. Patients were identified in the Western Denmark Heart Registry, which collects baseline characteristics and patient- and procedure-specific information on all angiographies and coronary interventions performed in the region. In Denmark, PPCI for STEMI was chosen as the preferred reperfusion strategy after publication of the Danish Trial of Acute Myocardial Infarction 2 (DANAMI-2) in 2003.1

Patients must meet the following criteria to be eligible for PPCI: symptom duration of \(\leq 12 \) hours and ST-segment elevation \(\geq 0.1 \) mV in at least 2 contiguous leads \(\geq 0.2 \) mV in \(V_1 - V_3 \) or presumed new-onset left bundle branch block. In 1999, prehospital diagnosis using telemedicine was introduced1 and in 2000, the National Board of Health decided that before 2006, all EMS vehicles should have equipment for 12-lead ECG acquisition and wireless transmission to a physician at the hospital. Field triage of patients directly to PPCI centers was introduced in 2003.5—9 Ambulance physicians were gradually introduced in the larger cities within the study area. During the study period, 18,410 patients with suspected STEMI or bundle branch block myocardial infarction were transferred from other hospitals or admitted directly to 1 of the 3 PPCI centers. The first index contact during the study period \((n=17,513) \) was included in the analyses, of which 12,403 patients underwent PPCI. Mortality data were not available in 216 patients, who were foreign citizens or had emigrated. Patients with a treatment delay of \(>12 \) hours \((n=2154) \) or with missing treatment delay data \((n=189) \), patients transported with the EMS and with a system delay of \(>6 \) hours \((n=292) \), and patients with missing system delay data \((n=38) \) were excluded. Thus, the study cohort comprised 9514 patients.

Time Delays

The estimation of various delays to initiation of reperfusion therapy was based on prehospital data registered by the EMS provider (Falck A/S) and time of symptom onset and first catheterization with a guiding catheter during PPCI registered in the Western Denmark Heart Registry. Treatment delay was calculated as the time from symptom onset to first catheterization with a guiding catheter during PPCI, patient delay as the time from symptom onset to EMS call, system delay as the time from EMS call to first catheterization with a guiding catheter during PPCI, and door-to-balloon delay as the time from arrival at the PPCI center to the first catheterization with a guiding catheter during PPCI (Figure 1).

Mortality

Data on mortality was obtained from the Danish Civil Registration System, which has kept electronic records on the sex, date of birth, change of address, date of emigration, and changes in vital status of the entire Danish population since 1968.9

Covariates

Baseline characteristics and other covariates (Table 1) were derived from the Danish Civil Registration System and the Western Denmark Heart Registry.

Statistical Analysis

Dichotomous data are presented as percentages. Continuous variables are presented as median (interquartile range). The Fisher exact test, \(\chi^2 \) test, Mann-Whitney test, and Kruskal-Wallis test were used for comparisons of categorical and continuous variables as appropriate. Significance was set at \(P<0.05 \) (2-sided test). Follow-up began on the date of PPCI and ended on the date of death; emigration; June 25, 2010; or after 7 years of follow-up (to ensure at least 10% of the study population at risk), whichever came first. Kaplan-Meier curves were constructed and stratified according to availability of EMS data and mode of prehospital triage. Comparisons between groups were made using log-rank statistics. Cox proportional hazards regression analysis was used to examine the association between possible predictors of outcome (see Table 1 for complete list) and time to death. Hazard ratios (HRs) with 95% CIs are presented. The proportional hazard assumption was checked for each categorical variable through visual inspection and by the method described by Grambsch and Therneau10 using the scaled Schoenfeld residuals. For continuous variables, the linearity assumption was checked graphically using the Martingale residuals. Cox-Snell residuals were used to assess the overall model fit. Systolic and diastolic blood pressure levels were converted to categorical values \((\leq 110, 110-129, 130-144, \text{and} \geq 145 \text{ mm Hg})\) because they did not fulfill the linearity assumption. Crude and mutually adjusted HRs with 95% CIs were computed. Variables associated with time to death in the univariable Cox regression analyses (Wald test \(P<0.05 \)) were included in multivariable Cox regression models. In the multivariable models, missing values were replaced with their conditional means. These values were obtained as predictions from a regression model using all nonmissing covariates for each subject.12 The same method for assigning missing values was used for categorical variables without rounding the binary outcome, as previously proposed by Allison13 when proportions are not close to 0 or 1. All statistical analyses were performed using STATA 11.0 (StataCorp LP; College Station, TX).

Results

The study cohort comprised 9514 patients with STEMI. Prehospital data from the EMS provider were available in 7858 (83%) patients, whereas 1656 (17%) had no EMS data and were presumed to be self-presenters at the PPCI centers. The number of patients included in the study cohort increased from 190 in 1999 to 1212 patients in 2009 (Figure 2). Among patients transported by the EMS from the scene of the event, the proportion triaged directly to a PPCI center increased from 33% \((34/103)\) in 1999 to 72% \((616/851)\) in 2009 \((P<0.001) \). When stratifying according to whether EMS data were available and whether patients transported by the EMS were transferred from local hospitals or field triaged directly to the PPCI center, there were significant differences in several baseline characteristics (Table 1). In patients triaged directly to a PPCI center \((n=3053) \) the median (interquartile range) system delay was 99 \((80-127)\) minutes; in patients transported by the EMS to the local hospital and transferred to a PPCI center \((n=3291) \), it was 159 \((130-199)\) minutes; and in patients self-presenting at a local hospital and transferred \((n=1514) \), it was 92 \((72-119)\) minutes. The corresponding door-to-balloon delays were 39 \((24-69)\), 33 \((23-92)\), and 26 \((20-69)\) minutes, respectively (Table 1). For the same groups, the proportion of patients treated with a system...
delay of ≤120 minutes was 70% (n = 2136), 17% (n = 572), and 76% (n = 1146), respectively, and the proportion of patients treated with a door-to-balloon delay of ≤90 minutes was 86% (n = 2017), 74% (n = 1941), and 94% (n = 911), respectively. The median follow-up time was 3.7 years (interquartile range, 1.7–5.9 years), with a 1-year absolute mortality of 9.8% (n = 937) and long-term absolute mortality (median follow-up, 3.7 years) of 18.5% (n = 1764). For patients triaged directly to the PPCI center, transported by the EMS to a local hospital and transferred, self-presenting at a Figure 1. Various delays to reperfusion with PPCI in patients with ST-segment elevation myocardial infarction. PCI, percutaneous coronary intervention; PPCI, primary PCI.

eTable 1. Characteristics of Patients With STEMI Treated With PPCI, Stratified According to Prehospital Triage (n = 9514)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>EMS Transport to a PCI Center (Field Triage) (n = 3053)</th>
<th>Self-Presenting at a PCI Center (n = 1656)</th>
<th>EMS Transport to a Local Hospital and Transfer (n = 3291)</th>
<th>Self-Presenting at a Local Hospital and Transfer (n = 1514)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>64 (56–74)</td>
<td>63 (54–73)</td>
<td>65 (57–75)</td>
<td>63 (53–73)</td>
<td><0.001</td>
</tr>
<tr>
<td>Female sex</td>
<td>790 (26)</td>
<td>433 (26)</td>
<td>894 (27)</td>
<td>401 (26)</td>
<td>0.69</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment for hypertension</td>
<td>866 (32)</td>
<td>478 (32)</td>
<td>912 (31)</td>
<td>418 (30)</td>
<td>0.68</td>
</tr>
<tr>
<td>Diabetes</td>
<td>306 (11)</td>
<td>204 (13)</td>
<td>353 (12)</td>
<td>162 (11)</td>
<td>0.14</td>
</tr>
<tr>
<td>Previous myocardial infarction</td>
<td>271 (10)</td>
<td>291 (14)</td>
<td>362 (12)</td>
<td>163 (12)</td>
<td>0.003</td>
</tr>
<tr>
<td>Previous PCI</td>
<td>194 (7.2)</td>
<td>129 (8.7)</td>
<td>193 (6.7)</td>
<td>92 (6.8)</td>
<td>0.075</td>
</tr>
<tr>
<td>Previous congestive heart failure</td>
<td>79 (2.6)</td>
<td>64 (3.9)</td>
<td>125 (3.8)</td>
<td>51 (3.4)</td>
<td>0.031</td>
</tr>
<tr>
<td>Active or previous smoker</td>
<td>2025 (7.7)</td>
<td>1045 (7.0)</td>
<td>2157 (7.7)</td>
<td>1049 (7.8)</td>
<td>0.50</td>
</tr>
<tr>
<td>Delays and transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment delay, min</td>
<td>175 (120–265)</td>
<td>180 (118–277)</td>
<td>235 (171–327)</td>
<td>248 (175–373)</td>
<td><0.001</td>
</tr>
<tr>
<td>Patient delay, min</td>
<td>76 (33–162)</td>
<td>2728 NA</td>
<td>80 (36–171)</td>
<td>176 (28–137)</td>
<td>0.001</td>
</tr>
<tr>
<td>System delay, min</td>
<td>99 (80–127)</td>
<td>NA</td>
<td>159 (130–199)</td>
<td>92 (72–119)</td>
<td>0.001</td>
</tr>
<tr>
<td>Door-to-balloon delay, min</td>
<td>39 (24–69)</td>
<td>2333 NA</td>
<td>33 (23–92)</td>
<td>26 (20–39)</td>
<td>0.001</td>
</tr>
<tr>
<td>Transportation, km</td>
<td>26 (7–50)</td>
<td>3053 NA</td>
<td>77 (48–111)</td>
<td>54 (37–97)</td>
<td>0.001</td>
</tr>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>26 (24–29)</td>
<td>26 (24–29)</td>
<td>26 (24–29)</td>
<td>26 (24–29)</td>
<td>0.81</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>130 (112–145)</td>
<td>130 (111–145)</td>
<td>125 (110–140)</td>
<td>128 (110–141)</td>
<td>0.001</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>75 (65–85)</td>
<td>75 (65–83)</td>
<td>75 (64–80)</td>
<td>75 (65–81)</td>
<td>0.001</td>
</tr>
<tr>
<td>Killip class</td>
<td>2936 1586</td>
<td>77 (48–111)</td>
<td>3187 1440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2657 (91)</td>
<td>1404 (89)</td>
<td>2888 (91)</td>
<td>1294 (90)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>156 (5.3)</td>
<td>88 (5.6)</td>
<td>149 (4.7)</td>
<td>70 (4.9)</td>
<td>0.11</td>
</tr>
<tr>
<td>III</td>
<td>56 (1.9)</td>
<td>41 (2.6)</td>
<td>73 (2.3)</td>
<td>44 (3.1)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>67 (2.3)</td>
<td>53 (3.3)</td>
<td>77 (2.4)</td>
<td>32 (2.2)</td>
<td></td>
</tr>
<tr>
<td>Anterior STEMI or BBBMI</td>
<td>1222 (45)</td>
<td>2748 593 (41)</td>
<td>1445 1266 (44)</td>
<td>2884 588 (45)</td>
<td>0.14</td>
</tr>
<tr>
<td>Culprit vessel</td>
<td>2959 1605</td>
<td>75 (64–80)</td>
<td>75 (65–81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left main</td>
<td>49 (1.7)</td>
<td>32 (2.0)</td>
<td>51 (1.6)</td>
<td>21 (1.4)</td>
<td></td>
</tr>
<tr>
<td>Left anterior descending artery</td>
<td>1293 (44)</td>
<td>658 (41)</td>
<td>1377 (43)</td>
<td>672 (46)</td>
<td>0.39</td>
</tr>
<tr>
<td>Circumflex artery</td>
<td>413 (14)</td>
<td>219 (14)</td>
<td>449 (14)</td>
<td>194 (13)</td>
<td></td>
</tr>
<tr>
<td>Right coronary artery</td>
<td>1204 (41)</td>
<td>696 (43)</td>
<td>1329 (41)</td>
<td>579 (40)</td>
<td></td>
</tr>
<tr>
<td>Multivessel disease</td>
<td>1265 2961</td>
<td>711 (46%)</td>
<td>1561 1498 (47)</td>
<td>3183 652 (45)</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Data are presented as median (interquartile range) or n (%). BBBMI indicates bundle branch block myocardial infarction; door-to-balloon delay, time from arrival at PPCI center to PPCI; EMS, emergency medical service; patient delay, time from symptom onset to EMS; PPCI, primary percutaneous coronary intervention; STEMI, ST-segment elevation myocardial infarction; system delay, time from EMS call to PPCI; treatment delay, time from symptom onset to PPCI.
local hospital and transferred, and self-presenting at a PPCI center, 1-year cumulative mortality was 8.1% (n=234), 10.7% (n=346), 10.6 (n=156), and 12.5% (n=201), respectively (log-rank P<0.001), and long-term cumulative mortality was 21.3% (n=424), 27.1% (n=702), 26.9% (n=309), and 26.9% (n=328), respectively (log-rank P<0.001) (Figure 3). After adjustment for other risk factors, including treatment delay, field-triaged patients had the lowest long-term mortality, with adjusted HRs (95% CI) of 1.26 (1.12–1.43) in patients transported by the EMS to a local hospital and transferred to a PPCI center, 1.28 (1.10–1.49) in patients self-presenting at a local hospital and transferred to a PPCI center, and 1.37 (1.18–1.58) in patients self-presenting at a PPCI center (Figure 4, Table 2). When restricting analyses to patients with available EMS data and adjusting for system delay, field-triaged patients still had lower mortality compared with patients transferred from other hospitals (Table 2).

Discussion

The main findings in the present study is that prehospital diagnosis and triage of patients with STEMI can be successfully implemented at a national level to ensure that the majority of patients are triaged directly to a PPCI center with an associated lower mortality. In 2003, Denmark was the first country to implement PPCI as a national reperfusion strategy. This decision was based on the DANAMI-2 trial, which documented that PPCI was superior to fibrinolysis when looking at a combined end point of death, reinfarction, and stroke. This strategy is supported by American and European guidelines that recommend PPCI as the preferred reperfusion strategy when performed in a timely manner. It is also supported by a meta-analysis from Boersma and colleagues based on randomized controlled trials comparing fibrinolysis with PPCI, documenting a significant reduction in mortality achieved by PPCI compared with fibrinolysis. However, in the Boersma et al meta-analysis, a mortality benefit was achieved by PPCI despite that prehospital diagnosis and field triage of patients was not performed in the large majority of the trials implemented. Thus, a substantial delay was seen at the local hospitals before transfer of patients. In the DANAMI-2 trial, this delay was 50 minutes, and no diagnoses were made for patients in the prehospital phase. From 1999, when the DANAMI-2 trial was still ongoing, prehospital diagnosis was gradually introduced in Denmark. From 2006, all EMS vehicles had equipment for ECG transmission, and when combining prehospital diagnosis with field triage directly to PPCI centers, a >1-hour reduction in overall delay from the EMS call to PPCI (system delay) was observed. Accordingly, triage of patients with STEMI for PPCI has improved considerably after the DANAMI-2 trial and the
other trials included in the Boersma et al meta-analysis. We have previously documented that each 1-hour increase in system delay is associated with a 10% relative increase in mortality.20 With a 1-year mortality of 10% to 11%, this means that the number of patients saved by a 1-hour earlier reperfusion therapy is estimated to be 10 per 1000 treated. The HR of 1.26 (95% CI, 1.12–1.43) observed in the present study among patients transported by the EMS to a local hospital and then transferred could indicate that the benefit of triaging patients directly to PPCI centers may not only be explained by a reduction in system delay. There is, of course, the risk of selection bias and residual confounding, but another possibility is that prompt admission to tertiary centers provides benefit in addition to the mortality reduction achieved by earlier PPCI. The observed HR of 1.084 per 1-hour increase in system delay (Table 2, model 2) does not contradict this because system delay and mode of triage are highly correlated, and when implementing both parameters in the analysis, there is a risk of overadjustment (ie, the risk that we underestimate the impact of both covariates on outcome).

The present study documents that a widespread implementation of a prehospital diagnostic program is possible with the use of telemedicine and ambulance physicians, enabling field triage directly to PPCI centers in the majority of patients with STEMI. However, there is still room for improvement. Thus, at the end of the study period, 30% of patients transported by the EMS from the scene of the event were still driven to the local hospital and then transferred for PPCI. The overall aim is to field triage >90% of patients with STEMI, which is achievable in regions with a special focus on prehospital diagnosis.19 Whereas previous studies have mainly addressed regional initiatives for improving triage of patients, the present study is considered to reflect the current use of prehospital diagnosis and field triage of patients at a national level because (1) it represents the majority of the Danish people; (2) the prehospital diagnostic strategy was implemented at a national level; (3) the same strategy of implementing telemedicine in all ambulance vehicles and implementing ambulance physicians in larger cities was prioritized throughout Denmark; and (4) in eastern Denmark, treatment with PPCI has been centralized at large PPCI centers (Copenhagen and Gentofte) that run 24 hours/day, 7 days/week. It is clear that field triage directly to PPCI centers is mandatory to ensure that the majority of patients with STEMI are treated within 2 hours of an EMS call, as recommended by the American and European guidelines,14–17 and further efforts should be put into ensuring that the remaining patients transported by the EMS from the scene of the event also are triaged directly to a PPCI center. Although there are numerous data on the use of PPCI in different countries, there is limited information regarding actual triage of patients with STEMI, which is of importance for outcome.21 We should consider implementing prehospital triage of patients with STEMI directly to PCI centers as a general quality-of-care measure.

Limitations

After PPCI was fully implemented as the preferred reperfusion therapy in 2004, patients with STEMI were routinely admitted or transferred for PCI. Fibrinolysis may have been used in a small number of patients, but unfortunately, there are no registries recording the use of fibrinolysis. Among patients transferred from a local hospital to a PPCI center, there were no data on EMS transportation to the local hospital in 32% of cases. These patients were assumed to be self-presenters at the local hospital. However, from previous studies, we know that ~16% are self-presenters at the local hospital,22 and thus, the group of patients classified as self-presenters at the local hospital is a mixed group that also comprises some patients with missing EMS data for the transport to the local hospital. Likewise, the number of patients classified as self-presenting at a PPCI center is larger than expected, and herein, a group of patients with missing EMS data for transportation to the PPCI center has been classified as...
self-presenters. There is no reason to believe that this has any impact on the main conclusions because it results in an underestimation of the proportion of patients transported by the EMS and underestimates the association between the mode of triage or system delay and mortality. There is no registry on patients with STEMI who are not receiving reperfusion therapy and no data on deaths before PCI. Regarding timing of reperfusion in PPCI, time of first balloon inflation normally is used as the time of reperfusion. However, reperfusion often is achieved already during wiring or thrombectomy. Because data on first wiring or thrombectomy were available in only a minority of patients and because insertion of the guiding catheter is followed within a few minutes by the first coronary intervention, we routinely use time of guiding catheter insertion as the time of first intervention. Further, because the phrase door to balloon is a widely accepted term, we decided to use this term synonymously with time from arrival at the PPCI center to first guiding catheter insertion.

Conclusions
A reperfusion strategy with PPCI only for STEMI was successfully implemented in Western Denmark, and a prehospital diagnostic program has ensured that the majority of patients transported by the EMS are triaged directly to PPCI centers, which is associated with lower mortality.
Sources of Funding
This study was supported by grants from The Helga and Peter Kornings Foundation (Frederiksbergade 78A, 8000 Aarhus C, Denmark, J.No. 40-134918), The Health Research Fund of Central Denmark Region (Oluf Palmes Allé 15, 8200 Aarhus N, Denmark, J.No. 1-45–72-1–08), and The Research Foundation at Skejby University Hospital.

Disclosures
None.

References
Primary Percutaneous Coronary Intervention as a National Reperfusion Strategy in Patients With ST-Segment Elevation Myocardial Infarction

Christian J. Terkelsen, Lisette O. Jensen, Hans H. Tilsted, Per Thaysen, Jan Ravkilde, Søren P. Johnsen, Sven Trautner, Henning R. Andersen, Leif Thuesen and Jens F. Lassen

Circ Cardiovasc Interv. published online November 9, 2011;

Circulation: Cardiovascular Interventions is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7640. Online ISSN: 1941-7632

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circinterventions.ahajournals.org/content/early/2011/11/09/CIRCINTERVENTIONS.111.962787

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Interventions_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Interventions_ is online at:
http://circinterventions.ahajournals.org//subscriptions/